Powered by RND
PodcastsTechnologieThe POWER Podcast
Luister naar The POWER Podcast in de app
Luister naar The POWER Podcast in de app
(2.067)(250 021)
Favorieten opslaan
Wekker
Slaaptimer

The POWER Podcast

Podcast The POWER Podcast
POWER
The POWER Podcast provides listeners with insight into the latest news and technology that is poised to affect the power industry. POWER’s Executive Editor Aaro...

Beschikbare afleveringen

5 van 186
  • 184. Nuclear Power Renaissance Underway in West Texas
    When you think of innovative advancements in nuclear power technology, places like the Idaho National Laboratory and the Massachusetts Institute of Technology probably come to mind. But today, some very exciting nuclear power development work is being done in West Texas, specifically, at Abilene Christian University (ACU). That’s where Natura Resources is working to construct a molten salt–cooled, liquid-fueled reactor (MSR). “We are in the process of building, most likely, the country’s first advanced nuclear reactor,” Doug Robison, founder and CEO of Natura Resources, said as a guest on The POWER Podcast. Natura has taken an iterative, milestone-based approach to advanced reactor development and deployment, focused on efficiency and performance. This started in 2020 when the company brought together ACU’s NEXT Lab with Texas A&M University; the University of Texas, Austin; and the Georgia Institute of Technology to form the Natura Resources Research Alliance. In only four years, Natura and its partners developed a unique nuclear power system and successfully licensed the design. The U.S. Nuclear Regulatory Commission (NRC) issued a construction permit for deployment of the system at ACU last September. Called the MSR-1, ACU’s unit will be a 1-MWth molten salt research reactor (MSRR). It is expected to provide valuable operational data to support Natura’s 100-MWe systems. It will also serve as a “world-class research tool” to train advanced reactor operators and educate students, the company said. Natura is not only focused on its ACU project, but it is also moving forward on commercial reactor projects. In February, the company announced the deployment of two advanced nuclear projects, which are also in Texas. These deployments, located in the Permian Basin and at Texas A&M University’s RELLIS Campus, represent significant strides in addressing energy and water needs in the state. “Our first was a deployment of a Natura commercial reactor in the Permian Basin, which is where I spent my career. We’re partnering with a Texas produced-water consortium that was created by the legislature in 2021,” said Robison. One of the things that can be done with the high process heat from an MSR is desalinization. “So, we’re going to be desalinating produced water and providing power—clean power—to the oil and gas industry for their operations in the Permian Basin,” said Robison. Meanwhile, at Texas A&M’s RELLIS Campus, which is located about eight miles northwest of the university’s main campus in College Station, Texas, a Natura MSR-100 reactor will be deployed. The initiative is part of a broader project known as “The Energy Proving Ground,” which involves multiple nuclear reactor companies. The project aims to bring commercial-ready small modular reactors (SMRs) to the site, providing a reliable source of clean energy for the Electric Reliability Council of Texas (ERCOT).
    --------  
    35:13
  • 183. Geothermal Energy Storage: The Clean Power Solution You Haven’t Heard Of
    Geothermal energy has been utilized by humans for millennia. While the first-ever use may be a mystery, we do know the Romans tapped into it in the first century for hot baths at Aquae Sulis (modern-day Bath, England). Since then, many other people and cultures have found ways to use the Earth’s underground heat to their benefit. Geothermal resources were used for district heating in France as far back as 1332. In 1904, Larderello, Italy, was home to the world’s first experiment in geothermal electricity generation, when five lightbulbs were lit. By 1913, the first commercial geothermal power plant was built there, which expanded to power the local railway system and nearby villages. However, one perhaps lesser-known geothermal concept revolves around energy storage. “It’s very much like pumped-storage hydropower, where you pump a lake up a mountain, but instead of going up a mountain, we’re putting that lake deep in the earth,” Cindy Taff, CEO of Sage Geosystems, explained as a guest on The POWER Podcast. Sage Geosystems’ technology utilizes knowledge gleaned from the oil and gas industry, where Taff spent more than 35 years as a Shell employee. “What we do is we drill a well. We’re targeting a very low-permeability formation, which is the opposite of what oil and gas is looking for, and quite frankly, it’s the opposite of what most geothermal technologies are looking for. That low permeability then allows you to place a fracture in that formation, and then operate that fracture like a balloon or like your lungs,” Taff explained. “When the demand is low, we use electricity to power an electric pump. We pump water into the fracture. We balloon that fracture open and store the water under pressure until a time of day that power demand peaks. Then, you open a valve at surface. That fracture is naturally going to close. It drives the water to surface. You put it through a Pelton turbine, which looks like a kid’s pinwheel. You spin the turbine, which spins the generator, and you generate electricity.” Unlike more traditional geothermal power generation systems that use hot water or steam extracted from underground geothermal reservoirs, Sage’s design uses what’s known as hot dry rock technology. To reach hot dry rock, drillers may have to go deeper to find desired formations, but these formations are much more common and less difficult to identify, which greatly reduces exploration risks. Taff said traditional geothermal energy developers face difficulties because they need to find three things underground: heat, water, and high-permeability formations. “The challenge is the exploration risk, or in other words, finding the resource where you’ve got the heat, the large body of water deep in the earth, as well as the permeability,” she said. “In hot dry rock geothermal, which is what we’re targeting, you’re looking only for that heat. We want a low-permeability formation, but again, that’s very prevalent.” Sage is now in the process of commissioning its first commercial energy storage project in Texas. “We’re testing the piping, and we’re function testing the generator and the Pelton turbine, so we’ll be operating that facility here in the next few weeks,” Taff said. Meanwhile, the company has also signed an agreement with the California Resources Corporation to establish a collaborative framework for pursuing commercial projects and joint funding opportunities related to subsurface energy storage and geothermal power generation in California. It also has ongoing district heating projects in Lithuania and Romania, and Taff said the U.S. Department of Defense has shown a lot of interest in the company’s geothermal technology. Additionally, Meta signed a contract for a 150-MW geothermal power generation system to supply one of its data centers.
    --------  
    22:54
  • 182. Space-Based Solar Power: The Future of 24/7 Clean Energy Generation
    Imagine a field of solar panels floating silently in the endless day of Earth’s orbit. Unlike their terrestrial cousins, this space-based solar array never faces nighttime, clouds, or atmospheric interference. Instead, they bathe in constant, intense sunlight, converting this endless stream of energy into electricity with remarkable efficiency. But the true innovation lies in how this power is transmitted to power grids on Earth. The electricity generated in space is converted into invisible beams of microwaves or laser light that pierce through the atmosphere with minimal losses. These beams are precisely aimed at receiving stations on Earth—collections of antennas or receivers known as “rectennas” that capture and reconvert the energy back into electricity that can be supplied to the power grid. This isn’t science fiction—it’s space-based solar power (SBSP), a technology that could revolutionize how clean energy is generated and distributed. While conventional solar panels on Earth can only produce power during daylight hours and are at the mercy of weather conditions, orbital solar arrays could beam massive amounts of clean energy to Earth 24 hours a day, 365 days a year, potentially transforming the global energy landscape.
    --------  
    43:58
  • 181. A New Paradigm for Power Grid Operation
    Power grids operate like an intricate ballet of energy generation and consumption that must remain perfectly balanced at all times. The grid maintains a steady frequency (60 Hz in North America and 50 Hz in many other regions) by matching power generation to demand in real-time. Traditional power plants with large rotating turbines and generators play a crucial role in this balance through their mechanical inertia—the natural tendency of these massive spinning machines to resist changes in their rotational speed. This inertia acts as a natural stabilizer for the grid. When there’s a sudden change in power demand or generation, such as a large factory turning on or a generator failing, the rotational energy stored in these spinning masses automatically helps cushion the impact. The machines momentarily speed up or slow down slightly, giving grid operators precious seconds to respond and adjust other power sources. However, as we transition to renewable energy sources like solar and wind that don’t have this natural mechanical inertia, maintaining grid stability becomes more challenging. This is why grid operators are increasingly focusing on technologies like synthetic inertia from wind turbines, battery storage systems, and advanced control systems to replicate the stabilizing effects traditionally provided by conventional power plants. Alex Boyd, CEO of PSC, a global specialist consulting firm working in the areas of power systems and control systems engineering, believes the importance of inertia will lessen, and probably sooner than most people think. In fact, he suggested stability based on physical inertia will soon be the least-preferred approach. Boyd recognizes that his view, which was expressed while he was a guest on The POWER Podcast, is potentially controversial, but there is a sound basis behind his prediction. Power electronics-based systems utilize inverter-based resources, such as wind, solar, and batteries. These systems can detect and respond to frequency deviations almost instantaneously using fast frequency response mechanisms. This actually allows for much faster stabilization compared to mechanical inertia. Power electronics reduce the need for traditional inertia by enabling precise control of grid parameters like frequency and voltage. While they decrease the available physical inertia, they also decrease the amount of inertia required for stability through advanced control strategies. Virtual synchronous generators and advanced inverters can emulate inertia dynamically, offering tunable responses that adapt to grid conditions. For example, adaptive inertia schemes provide high initial inertia to absorb faults but reduce it over time to prevent oscillations. Power electronic systems address stability issues across a wide range of frequencies and timescales, including harmonic stability and voltage regulation. This is achieved through multi-timescale modeling and control techniques that are not possible with purely mechanical systems. Inverter-based resources allow for distributed coordination of grid services, such as frequency regulation and voltage support, enabling more decentralized grid operation compared to centralized inertia-centric systems. Power electronic systems are essential for grids with a high penetration of renewable energy sources, which lack inherent mechanical inertia. These systems ensure stability while facilitating the transition to low-carbon energy by emulating or replacing traditional generator functions. “I do foresee a time in the not-too-distant future where we’ll be thinking about how do we actually design a system so that we don’t need to be impacted so much by the physical inertia, because it’s preventing us from doing what we want to do,” said Boyd. “I think that time is coming. There will be a lot of challenges to overcome, and there’ll be a lot of learning that needs to be done, but I do think the time is coming.”
    --------  
    41:18
  • 180. Data Centers Consume 3% of Energy in Europe: Understand Geographic Hotspots and How AI Is Reshaping Demand
    The rapid rise of data centers has put many power industry demand forecasters on edge. Some predict the power-hungry nature of the facilities will quickly create problems for utilities and the grid. ICIS, a data analytics provider, calculates that in 2024, demand from data centers in Europe accounted for 96 TWh, or 3.1% of total power demand. “Now, you could say it’s not a lot—3%—it’s just a marginal size, but I’m going to spice it up a bit with two additional layers,” Matteo Mazzoni, director of Energy Analytics at ICIS, said as a guest on The POWER Podcast. “One is: that power demand is very consolidated in just a small subset of countries. So, five countries account of over 60% of that European power demand. And within those five countries, which are the usual suspects in terms of Germany, France, the UK, Ireland, and Netherlands, half of that consumption is located in the FLAP-D market, which sounds like a fancy new coffee, but in reality is just five big cities: Frankfurt, London, Amsterdam, Paris, and Dublin.” Predicting where and how data center demand will grow in the future is challenging, however, especially when looking out more than a few years. “What we’ve tried to do with our research is to divide it into two main time frames,” Mazzoni explained. “The next three to five years, where we see our forecast being relatively accurate because we looked at the development of new data centers, where they are being built, and all the information that are currently available. And, then, what might happen past 2030, which is a little bit more uncertain given how fast technology is developing and all that is happening on the AI [artificial intelligence] front.” Based on its research, ICIS expects European data center power demand to grow 75% by 2030, to 168 TWh. “It’s going to be a lot of the same,” Mazzoni predicted. “So, those big centers—those big cities—are still set to attract most of the additional data center consumption, but we see the emergence of also new interesting markets, like the Nordics and to a certain extent also southern Europe with Iberia [especially Spain] being an interesting market.” Yet, there is still a fair amount of uncertainty around demand projections. Advances in liquid cooling methods will likely reduce data center power usage. That’s because liquid cooling offers more efficient heat dissipation, which translates directly into lower electricity consumption. Additionally, there are opportunities for further improvement in power usage effectiveness (PUE), which is a widely used data center energy efficiency metric. At the global level, the average PUE has decreased from 2.5 in 2007 to a current average of 1.56, according to the ICIS report. However, new facilities consistently achieve a PUE of 1.3 and sometimes much better. Google, which has many state-of-the-art and highly efficient data centers, reported a global average PUE of 1.09 for its facilities over the last year. Said Mazzoni, “An expert in the field told us when we were doing our research, when tech moves out of the equation and you have energy engineers stepping in, you start to see that a lot of efficiency improvements will come, and demand will inevitably fall.” Thus, data center load growth projections should be taken with a grain of salt. “The forecast that we have beyond 2030 will need to be revised,” Mazzoni predicted. “If we look at the history of the past 20 years—all analysts and all forecasts around load growth—they all overshoot what eventually happened. The first time it happened when the internet arrived—there was obviously great expectations—and then EVs, electric vehicles, and then heat pumps. But if we look at, for example, last year—2024—European power demand was up by 1.3%, U.S. power demand was up by 1.8%, and probably weather was the main driver behind that growth.”
    --------  
    30:59

Meer Technologie podcasts

Over The POWER Podcast

The POWER Podcast provides listeners with insight into the latest news and technology that is poised to affect the power industry. POWER’s Executive Editor Aaron Larson conducts interviews with leading industry experts and gets updates from insiders at power-related conferences and events held around the world.
Podcast website

Luister naar The POWER Podcast, AI Report en vele andere podcasts van over de hele wereld met de radio.net-app

Ontvang de gratis radio.net app

  • Zenders en podcasts om te bookmarken
  • Streamen via Wi-Fi of Bluetooth
  • Ondersteunt Carplay & Android Auto
  • Veel andere app-functies

The POWER Podcast: Podcasts in familie

Social
v7.10.0 | © 2007-2025 radio.de GmbH
Generated: 3/12/2025 - 4:25:53 AM