Powered by RND
PodcastsWetenschapDaily Paper Cast

Daily Paper Cast

Jingwen Liang, Gengyu Wang
Daily Paper Cast
Nieuwste aflevering

Beschikbare afleveringen

5 van 1403
  • General Agentic Memory Via Deep Research
    🤗 Upvotes: 121 | cs.CL, cs.AI, cs.IR, cs.LG Authors: B. Y. Yan, Chaofan Li, Hongjin Qian, Shuqi Lu, Zheng Liu Title: General Agentic Memory Via Deep Research Arxiv: http://arxiv.org/abs/2511.18423v1 Abstract: Memory is critical for AI agents, yet the widely-adopted static memory, aiming to create readily available memory in advance, is inevitably subject to severe information loss. To address this limitation, we propose a novel framework called \textbf{general agentic memory (GAM)}. GAM follows the principle of "\textbf{just-in time (JIT) compilation}" where it focuses on creating optimized contexts for its client at runtime while keeping only simple but useful memory during the offline stage. To this end, GAM employs a duo-design with the following components. 1) \textbf{Memorizer}, which highlights key historical information using a lightweight memory, while maintaining complete historical information within a universal page-store. 2) \textbf{Researcher}, which retrieves and integrates useful information from the page-store for its online request guided by the pre-constructed memory. This design allows GAM to effectively leverage the agentic capabilities and test-time scalability of frontier large language models (LLMs), while also facilitating end-to-end performance optimization through reinforcement learning. In our experimental study, we demonstrate that GAM achieves substantial improvement on various memory-grounded task completion scenarios against existing memory systems.
    --------  
    25:36
  • AutoEnv: Automated Environments for Measuring Cross-Environment Agent Learning
    🤗 Upvotes: 79 | cs.AI, cs.CL, cs.LG Authors: Jiayi Zhang, Yiran Peng, Fanqi Kong, Yang Cheng, Yifan Wu, Zhaoyang Yu, Jinyu Xiang, Jianhao Ruan, Jinlin Wang, Maojia Song, HongZhang Liu, Xiangru Tang, Bang Liu, Chenglin Wu, Yuyu Luo Title: AutoEnv: Automated Environments for Measuring Cross-Environment Agent Learning Arxiv: http://arxiv.org/abs/2511.19304v1 Abstract: Humans naturally adapt to diverse environments by learning underlying rules across worlds with different dynamics, observations, and reward structures. In contrast, existing agents typically demonstrate improvements via self-evolving within a single domain, implicitly assuming a fixed environment distribution. Cross-environment learning has remained largely unmeasured: there is no standard collection of controllable, heterogeneous environments, nor a unified way to represent how agents learn. We address these gaps in two steps. First, we propose AutoEnv, an automated framework that treats environments as factorizable distributions over transitions, observations, and rewards, enabling low-cost (4.12 USD on average) generation of heterogeneous worlds. Using AutoEnv, we construct AutoEnv-36, a dataset of 36 environments with 358 validated levels, on which seven language models achieve 12-49% normalized reward, demonstrating the challenge of AutoEnv-36. Second, we formalize agent learning as a component-centric process driven by three stages of Selection, Optimization, and Evaluation applied to an improvable agent component. Using this formulation, we design eight learning methods and evaluate them on AutoEnv-36. Empirically, the gain of any single learning method quickly decrease as the number of environments increases, revealing that fixed learning methods do not scale across heterogeneous environments. Environment-adaptive selection of learning methods substantially improves performance but exhibits diminishing returns as the method space expands. These results highlight both the necessity and the current limitations of agent learning for scalable cross-environment generalization, and position AutoEnv and AutoEnv-36 as a testbed for studying cross-environment agent learning. The code is avaiable at https://github.com/FoundationAgents/AutoEnv.
    --------  
    23:00
  • Computer-Use Agents as Judges for Generative User Interface
    🤗 Upvotes: 47 | cs.CV, cs.CL, cs.HC Authors: Kevin Qinghong Lin, Siyuan Hu, Linjie Li, Zhengyuan Yang, Lijuan Wang, Philip Torr, Mike Zheng Shou Title: Computer-Use Agents as Judges for Generative User Interface Arxiv: http://arxiv.org/abs/2511.15567v1 Abstract: Computer-Use Agents (CUA) are becoming increasingly capable of autonomously operating digital environments through Graphical User Interfaces (GUI). Yet, most GUI remain designed primarily for humans--prioritizing aesthetics and usability--forcing agents to adopt human-oriented behaviors that are unnecessary for efficient task execution. At the same time, rapid advances in coding-oriented language models (Coder) have transformed automatic GUI design. This raises a fundamental question: Can CUA as judges to assist Coder for automatic GUI design? To investigate, we introduce AUI-Gym, a benchmark for Automatic GUI development spanning 52 applications across diverse domains. Using language models, we synthesize 1560 tasks that simulate real-world scenarios. To ensure task reliability, we further develop a verifier that programmatically checks whether each task is executable within its environment. Building on this, we propose a Coder-CUA in Collaboration framework: the Coder acts as Designer, generating and revising websites, while the CUA serves as Judge, evaluating functionality and refining designs. Success is measured not by visual appearance, but by task solvability and CUA navigation success rate. To turn CUA feedback into usable guidance, we design a CUA Dashboard that compresses multi-step navigation histories into concise visual summaries, offering interpretable guidance for iterative redesign. By positioning agents as both designers and judges, our framework shifts interface design toward agent-native efficiency and reliability. Our work takes a step toward shifting agents from passive use toward active participation in digital environments. Our code and dataset are available at https://github.com/showlab/AUI.
    --------  
    25:50
  • DeCo: Frequency-Decoupled Pixel Diffusion for End-to-End Image Generation
    🤗 Upvotes: 44 | cs.CV, cs.AI Authors: Zehong Ma, Longhui Wei, Shuai Wang, Shiliang Zhang, Qi Tian Title: DeCo: Frequency-Decoupled Pixel Diffusion for End-to-End Image Generation Arxiv: http://arxiv.org/abs/2511.19365v1 Abstract: Pixel diffusion aims to generate images directly in pixel space in an end-to-end fashion. This approach avoids the limitations of VAE in the two-stage latent diffusion, offering higher model capacity. Existing pixel diffusion models suffer from slow training and inference, as they usually model both high-frequency signals and low-frequency semantics within a single diffusion transformer (DiT). To pursue a more efficient pixel diffusion paradigm, we propose the frequency-DeCoupled pixel diffusion framework. With the intuition to decouple the generation of high and low frequency components, we leverage a lightweight pixel decoder to generate high-frequency details conditioned on semantic guidance from the DiT. This thus frees the DiT to specialize in modeling low-frequency semantics. In addition, we introduce a frequency-aware flow-matching loss that emphasizes visually salient frequencies while suppressing insignificant ones. Extensive experiments show that DeCo achieves superior performance among pixel diffusion models, attaining FID of 1.62 (256x256) and 2.22 (512x512) on ImageNet, closing the gap with latent diffusion methods. Furthermore, our pretrained text-to-image model achieves a leading overall score of 0.86 on GenEval in system-level comparison. Codes are publicly available at https://github.com/Zehong-Ma/DeCo.
    --------  
    25:10
  • DR Tulu: Reinforcement Learning with Evolving Rubrics for Deep Research
    🤗 Upvotes: 42 | cs.CL, cs.AI, cs.LG Authors: Rulin Shao, Akari Asai, Shannon Zejiang Shen, Hamish Ivison, Varsha Kishore, Jingming Zhuo, Xinran Zhao, Molly Park, Samuel G. Finlayson, David Sontag, Tyler Murray, Sewon Min, Pradeep Dasigi, Luca Soldaini, Faeze Brahman, Wen-tau Yih, Tongshuang Wu, Luke Zettlemoyer, Yoon Kim, Hannaneh Hajishirzi, Pang Wei Koh Title: DR Tulu: Reinforcement Learning with Evolving Rubrics for Deep Research Arxiv: http://arxiv.org/abs/2511.19399v1 Abstract: Deep research models perform multi-step research to produce long-form, well-attributed answers. However, most open deep research models are trained on easily verifiable short-form QA tasks via reinforcement learning with verifiable rewards (RLVR), which does not extend to realistic long-form tasks. We address this with Reinforcement Learning with Evolving Rubrics (RLER), in which we construct and maintain rubrics that co-evolve with the policy model during training; this allows the rubrics to incorporate information that the model has newly explored and to provide discriminative, on-policy feedback. Using RLER, we develop Deep Research Tulu (DR Tulu-8B), the first open model that is directly trained for open-ended, long-form deep research. Across four long-form deep research benchmarks in science, healthcare and general domains, DR Tulu substantially outperforms existing open deep research models, and matches or exceeds proprietary deep research systems, while being significantly smaller and cheaper per query. To facilitate future research, we release all data, models, and code, including our new MCP-based agent infrastructure for deep research systems.
    --------  
    20:31

Meer Wetenschap podcasts

Over Daily Paper Cast

We update every weekday to discuss highest-voted papers from Huggingface Daily Paper (https://huggingface.co/papers). Both the podcast scripts and audio are generated by AI. Feedback and suggestions are welcome! Email us: [email protected] Creator: Jingwen Liang, 3D ML, https://www.linkedin.com/in/jingwen-liang/ Gengyu Wang, LLM ML, http://wanggengyu.com Listen on: Spotify: https://open.spotify.com/show/21nrhmdaA8qoBiH8q03NXL Apple Podcast: https://podcasts.apple.com/us/podcast/daily-paper-cast/id1777620236 Cover Image by Kawen Kuang https://kawen.art
Podcast website

Luister naar Daily Paper Cast, StarTalk Radio en vele andere podcasts van over de hele wereld met de radio.net-app

Ontvang de gratis radio.net app

  • Zenders en podcasts om te bookmarken
  • Streamen via Wi-Fi of Bluetooth
  • Ondersteunt Carplay & Android Auto
  • Veel andere app-functies
Social
v8.0.4 | © 2007-2025 radio.de GmbH
Generated: 11/26/2025 - 8:39:03 PM