PodcastsWetenschapDaily Paper Cast

Daily Paper Cast

Jingwen Liang, Gengyu Wang
Daily Paper Cast
Nieuwste aflevering

1529 afleveringen

  • Daily Paper Cast

    Latent Implicit Visual Reasoning

    27-12-2025 | 25 Min.

    🤗 Upvotes: 34 | cs.CV Authors: Kelvin Li, Chuyi Shang, Leonid Karlinsky, Rogerio Feris, Trevor Darrell, Roei Herzig Title: Latent Implicit Visual Reasoning Arxiv: http://arxiv.org/abs/2512.21218v1 Abstract: While Large Multimodal Models (LMMs) have made significant progress, they remain largely text-centric, relying on language as their core reasoning modality. As a result, they are limited in their ability to handle reasoning tasks that are predominantly visual. Recent approaches have sought to address this by supervising intermediate visual steps with helper images, depth maps, or image crops. However, these strategies impose restrictive priors on what "useful" visual abstractions look like, add heavy annotation costs, and struggle to generalize across tasks. To address this critical limitation, we propose a task-agnostic mechanism that trains LMMs to discover and use visual reasoning tokens without explicit supervision. These tokens attend globally and re-encode the image in a task-adaptive way, enabling the model to extract relevant visual information without hand-crafted supervision. Our approach outperforms direct fine-tuning and achieves state-of-the-art results on a diverse range of vision-centric tasks -- including those where intermediate abstractions are hard to specify -- while also generalizing to multi-task instruction tuning.

  • Daily Paper Cast

    Emergent temporal abstractions in autoregressive models enable hierarchical reinforcement learning

    27-12-2025 | 26 Min.

    🤗 Upvotes: 26 | cs.LG, cs.AI Authors: Seijin Kobayashi, Yanick Schimpf, Maximilian Schlegel, Angelika Steger, Maciej Wolczyk, Johannes von Oswald, Nino Scherrer, Kaitlin Maile, Guillaume Lajoie, Blake A. Richards, Rif A. Saurous, James Manyika, Blaise Agüera y Arcas, Alexander Meulemans, João Sacramento Title: Emergent temporal abstractions in autoregressive models enable hierarchical reinforcement learning Arxiv: http://arxiv.org/abs/2512.20605v2 Abstract: Large-scale autoregressive models pretrained on next-token prediction and finetuned with reinforcement learning (RL) have achieved unprecedented success on many problem domains. During RL, these models explore by generating new outputs, one token at a time. However, sampling actions token-by-token can result in highly inefficient learning, particularly when rewards are sparse. Here, we show that it is possible to overcome this problem by acting and exploring within the internal representations of an autoregressive model. Specifically, to discover temporally-abstract actions, we introduce a higher-order, non-causal sequence model whose outputs control the residual stream activations of a base autoregressive model. On grid world and MuJoCo-based tasks with hierarchical structure, we find that the higher-order model learns to compress long activation sequence chunks onto internal controllers. Critically, each controller executes a sequence of behaviorally meaningful actions that unfold over long timescales and are accompanied with a learned termination condition, such that composing multiple controllers over time leads to efficient exploration on novel tasks. We show that direct internal controller reinforcement, a process we term "internal RL", enables learning from sparse rewards in cases where standard RL finetuning fails. Our results demonstrate the benefits of latent action generation and reinforcement in autoregressive models, suggesting internal RL as a promising avenue for realizing hierarchical RL within foundation models.

  • Daily Paper Cast

    TurboDiffusion: Accelerating Video Diffusion Models by 100-200 Times

    26-12-2025 | 21 Min.

    🤗 Upvotes: 51 | cs.CV, cs.AI, cs.LG Authors: Jintao Zhang, Kaiwen Zheng, Kai Jiang, Haoxu Wang, Ion Stoica, Joseph E. Gonzalez, Jianfei Chen, Jun Zhu Title: TurboDiffusion: Accelerating Video Diffusion Models by 100-200 Times Arxiv: http://arxiv.org/abs/2512.16093v1 Abstract: We introduce TurboDiffusion, a video generation acceleration framework that can speed up end-to-end diffusion generation by 100-200x while maintaining video quality. TurboDiffusion mainly relies on several components for acceleration: (1) Attention acceleration: TurboDiffusion uses low-bit SageAttention and trainable Sparse-Linear Attention (SLA) to speed up attention computation. (2) Step distillation: TurboDiffusion adopts rCM for efficient step distillation. (3) W8A8 quantization: TurboDiffusion quantizes model parameters and activations to 8 bits to accelerate linear layers and compress the model. In addition, TurboDiffusion incorporates several other engineering optimizations. We conduct experiments on the Wan2.2-I2V-14B-720P, Wan2.1-T2V-1.3B-480P, Wan2.1-T2V-14B-720P, and Wan2.1-T2V-14B-480P models. Experimental results show that TurboDiffusion achieves 100-200x speedup for video generation even on a single RTX 5090 GPU, while maintaining comparable video quality. The GitHub repository, which includes model checkpoints and easy-to-use code, is available at https://github.com/thu-ml/TurboDiffusion.

  • Daily Paper Cast

    Learning to Reason in 4D: Dynamic Spatial Understanding for Vision Language Models

    26-12-2025 | 22 Min.

    🤗 Upvotes: 42 | cs.CV Authors: Shengchao Zhou, Yuxin Chen, Yuying Ge, Wei Huang, Jiehong Lin, Ying Shan, Xiaojuan Qi Title: Learning to Reason in 4D: Dynamic Spatial Understanding for Vision Language Models Arxiv: http://arxiv.org/abs/2512.20557v1 Abstract: Vision-language models (VLM) excel at general understanding yet remain weak at dynamic spatial reasoning (DSR), i.e., reasoning about the evolvement of object geometry and relationship in 3D space over time, largely due to the scarcity of scalable 4D-aware training resources. To bridge this gap across aspects of dataset, benchmark and model, we introduce DSR Suite. First, we propose an automated pipeline that generates multiple-choice question-answer pairs from in-the-wild videos for DSR. By leveraging modern vision foundation models, the pipeline extracts rich geometric and motion information, including camera poses, local point clouds, object masks, orientations, and 3D trajectories. These geometric cues enable the construction of DSR-Train for learning and further human-refined DSR-Bench for evaluation. Compared with previous works, our data emphasize (i) in-the-wild video sources, (ii) object- and scene-level 3D requirements, (iii) viewpoint transformations, (iv) multi-object interactions, and (v) fine-grained, procedural answers. Beyond data, we propose a lightweight Geometry Selection Module (GSM) to seamlessly integrate geometric priors into VLMs, which condenses question semantics and extracts question-relevant knowledge from pretrained 4D reconstruction priors into a compact set of geometry tokens. This targeted extraction avoids overwhelming the model with irrelevant knowledge. Experiments show that integrating DSR-Train and GSM into Qwen2.5-VL-7B significantly enhances its dynamic spatial reasoning capability, while maintaining accuracy on general video understanding benchmarks.

  • Daily Paper Cast

    DreaMontage: Arbitrary Frame-Guided One-Shot Video Generation

    26-12-2025 | 21 Min.

    🤗 Upvotes: 26 | cs.CV Authors: Jiawei Liu, Junqiao Li, Jiangfan Deng, Gen Li, Siyu Zhou, Zetao Fang, Shanshan Lao, Zengde Deng, Jianing Zhu, Tingting Ma, Jiayi Li, Yunqiu Wang, Qian He, Xinglong Wu Title: DreaMontage: Arbitrary Frame-Guided One-Shot Video Generation Arxiv: http://arxiv.org/abs/2512.21252v1 Abstract: The "one-shot" technique represents a distinct and sophisticated aesthetic in filmmaking. However, its practical realization is often hindered by prohibitive costs and complex real-world constraints. Although emerging video generation models offer a virtual alternative, existing approaches typically rely on naive clip concatenation, which frequently fails to maintain visual smoothness and temporal coherence. In this paper, we introduce DreaMontage, a comprehensive framework designed for arbitrary frame-guided generation, capable of synthesizing seamless, expressive, and long-duration one-shot videos from diverse user-provided inputs. To achieve this, we address the challenge through three primary dimensions. (i) We integrate a lightweight intermediate-conditioning mechanism into the DiT architecture. By employing an Adaptive Tuning strategy that effectively leverages base training data, we unlock robust arbitrary-frame control capabilities. (ii) To enhance visual fidelity and cinematic expressiveness, we curate a high-quality dataset and implement a Visual Expression SFT stage. In addressing critical issues such as subject motion rationality and transition smoothness, we apply a Tailored DPO scheme, which significantly improves the success rate and usability of the generated content. (iii) To facilitate the production of extended sequences, we design a Segment-wise Auto-Regressive (SAR) inference strategy that operates in a memory-efficient manner. Extensive experiments demonstrate that our approach achieves visually striking and seamlessly coherent one-shot effects while maintaining computational efficiency, empowering users to transform fragmented visual materials into vivid, cohesive one-shot cinematic experiences.

Meer Wetenschap podcasts

Over Daily Paper Cast

We update every weekday to discuss highest-voted papers from Huggingface Daily Paper (https://huggingface.co/papers). Both the podcast scripts and audio are generated by AI. Feedback and suggestions are welcome! Email us: [email protected] Creator: Jingwen Liang, 3D ML, https://www.linkedin.com/in/jingwen-liang/ Gengyu Wang, LLM ML, http://wanggengyu.com Listen on: Spotify: https://open.spotify.com/show/21nrhmdaA8qoBiH8q03NXL Apple Podcast: https://podcasts.apple.com/us/podcast/daily-paper-cast/id1777620236 Cover Image by Kawen Kuang https://kawen.art
Podcast website

Luister naar Daily Paper Cast, The Infinite Monkey Cage en vele andere podcasts van over de hele wereld met de radio.net-app

Ontvang de gratis radio.net app

  • Zenders en podcasts om te bookmarken
  • Streamen via Wi-Fi of Bluetooth
  • Ondersteunt Carplay & Android Auto
  • Veel andere app-functies
Social
v8.2.1 | © 2007-2025 radio.de GmbH
Generated: 12/28/2025 - 1:16:32 AM