PodcastsWetenschapDaily Paper Cast

Daily Paper Cast

Jingwen Liang, Gengyu Wang
Daily Paper Cast
Nieuwste aflevering

1598 afleveringen

  • Daily Paper Cast

    MemGovern: Enhancing Code Agents through Learning from Governed Human Experiences

    15-1-2026 | 23 Min.

    🤗 Upvotes: 62 | cs.SE, cs.AI Authors: Qihao Wang, Ziming Cheng, Shuo Zhang, Fan Liu, Rui Xu, Heng Lian, Kunyi Wang, Xiaoming Yu, Jianghao Yin, Sen Hu, Yue Hu, Shaolei Zhang, Yanbing Liu, Ronghao Chen, Huacan Wang Title: MemGovern: Enhancing Code Agents through Learning from Governed Human Experiences Arxiv: http://arxiv.org/abs/2601.06789v2 Abstract: While autonomous software engineering (SWE) agents are reshaping programming paradigms, they currently suffer from a "closed-world" limitation: they attempt to fix bugs from scratch or solely using local context, ignoring the immense historical human experience available on platforms like GitHub. Accessing this open-world experience is hindered by the unstructured and fragmented nature of real-world issue-tracking data. In this paper, we introduce MemGovern, a framework designed to govern and transform raw GitHub data into actionable experiential memory for agents. MemGovern employs experience governance to convert human experience into agent-friendly experience cards and introduces an agentic experience search strategy that enables logic-driven retrieval of human expertise. By producing 135K governed experience cards, MemGovern achieves a significant performance boost, improving resolution rates on the SWE-bench Verified by 4.65%. As a plug-in approach, MemGovern provides a solution for agent-friendly memory infrastructure.

  • Daily Paper Cast

    Solar Open Technical Report

    15-1-2026 | 21 Min.

    🤗 Upvotes: 53 | cs.CL Authors: Sungrae Park, Sanghoon Kim, Jungho Cho, Gyoungjin Gim, Dawoon Jung, Mikyoung Cha, Eunhae Choo, Taekgyu Hong, Minbyul Jeong, SeHwan Joo, Minsoo Khang, Eunwon Kim, Minjeong Kim, Sujeong Kim, Yunsu Kim, Hyeonju Lee, Seunghyun Lee, Sukyung Lee, Siyoung Park, Gyungin Shin, Inseo Song, Wonho Song, Seonghoon Yang, Seungyoun Yi, Sanghoon Yoon, Jeonghyun Ko, Seyoung Song, Keunwoo Choi, Hwalsuk Lee, Sunghun Kim, Du-Seong Chang, Kyunghyun Cho, Junsuk Choe, Hwaran Lee, Jae-Gil Lee, KyungTae Lim, Alice Oh Title: Solar Open Technical Report Arxiv: http://arxiv.org/abs/2601.07022v1 Abstract: We introduce Solar Open, a 102B-parameter bilingual Mixture-of-Experts language model for underserved languages. Solar Open demonstrates a systematic methodology for building competitive LLMs by addressing three interconnected challenges. First, to train effectively despite data scarcity for underserved languages, we synthesize 4.5T tokens of high-quality, domain-specific, and RL-oriented data. Second, we coordinate this data through a progressive curriculum jointly optimizing composition, quality thresholds, and domain coverage across 20 trillion tokens. Third, to enable reasoning capabilities through scalable RL, we apply our proposed framework SnapPO for efficient optimization. Across benchmarks in English and Korean, Solar Open achieves competitive performance, demonstrating the effectiveness of this methodology for underserved language AI development.

  • Daily Paper Cast

    KnowMe-Bench: Benchmarking Person Understanding for Lifelong Digital Companions

    15-1-2026 | 22 Min.

    🤗 Upvotes: 47 | cs.AI, cs.IR Authors: Tingyu Wu, Zhisheng Chen, Ziyan Weng, Shuhe Wang, Chenglong Li, Shuo Zhang, Sen Hu, Silin Wu, Qizhen Lan, Huacan Wang, Ronghao Chen Title: KnowMe-Bench: Benchmarking Person Understanding for Lifelong Digital Companions Arxiv: http://arxiv.org/abs/2601.04745v1 Abstract: Existing long-horizon memory benchmarks mostly use multi-turn dialogues or synthetic user histories, which makes retrieval performance an imperfect proxy for person understanding. We present \BenchName, a publicly releasable benchmark built from long-form autobiographical narratives, where actions, context, and inner thoughts provide dense evidence for inferring stable motivations and decision principles. \BenchName~reconstructs each narrative into a flashback-aware, time-anchored stream and evaluates models with evidence-linked questions spanning factual recall, subjective state attribution, and principle-level reasoning. Across diverse narrative sources, retrieval-augmented systems mainly improve factual accuracy, while errors persist on temporally grounded explanations and higher-level inferences, highlighting the need for memory mechanisms beyond retrieval. Our data is in \href{KnowMeBench}{https://github.com/QuantaAlpha/KnowMeBench}.

  • Daily Paper Cast

    User-Oriented Multi-Turn Dialogue Generation with Tool Use at scale

    15-1-2026 | 23 Min.

    🤗 Upvotes: 41 | cs.CL Authors: Jungho Cho, Minbyul Jeong, Sungrae Park Title: User-Oriented Multi-Turn Dialogue Generation with Tool Use at scale Arxiv: http://arxiv.org/abs/2601.08225v1 Abstract: The recent paradigm shift toward large reasoning models (LRMs) as autonomous agents has intensified the demand for sophisticated, multi-turn tool-use capabilities. Yet, existing datasets and data-generation approaches are limited by static, predefined toolsets that cannot scale to the complexity of open-ended human-agent collaboration. To address this, we initially developed a framework for automated task-oriented multi-turn dialogue generation at scale, utilizing an LRM-based simulator to dynamically generate high-value, domain-specific tools to solve specified tasks. However, we observe that a purely task-oriented design often results in "solely task-solving" trajectories, where the agent completes the objective with minimal interaction, failing to generate the high turn-count conversations seen in realistic scenarios. To bridge this gap, we shift toward a user-oriented simulation paradigm. By decoupling task generation from a dedicated user simulator that mimics human behavioral rules - such as incremental request-making and turn-by-turn feedback - we facilitate more authentic, extended multi-turn dialogues that reflect the iterative nature of real-world problem solving. Our generation pipeline operates as a versatile, plug-and-play module capable of initiating generation from any state, ensuring high scalability in producing extended tool-use data. Furthermore, by facilitating multiple task completions within a single trajectory, it yields a high-density dataset that reflects the multifaceted demands of real-world human-agent interaction.

  • Daily Paper Cast

    ShowUI-$π$: Flow-based Generative Models as GUI Dexterous Hands

    15-1-2026 | 22 Min.

    🤗 Upvotes: 37 | cs.CV, cs.AI, cs.HC Authors: Siyuan Hu, Kevin Qinghong Lin, Mike Zheng Shou Title: ShowUI-$π$: Flow-based Generative Models as GUI Dexterous Hands Arxiv: http://arxiv.org/abs/2512.24965v1 Abstract: Building intelligent agents capable of dexterous manipulation is essential for achieving human-like automation in both robotics and digital environments. However, existing GUI agents rely on discrete click predictions (x,y), which prohibits free-form, closed-loop trajectories (e.g. dragging a progress bar) that require continuous, on-the-fly perception and adjustment. In this work, we develop ShowUI-$π$, the first flow-based generative model as GUI dexterous hand, featuring the following designs: (i) Unified Discrete-Continuous Actions, integrating discrete clicks and continuous drags within a shared model, enabling flexible adaptation across diverse interaction modes; (ii) Flow-based Action Generation for drag modeling, which predicts incremental cursor adjustments from continuous visual observations via a lightweight action expert, ensuring smooth and stable trajectories; (iii) Drag Training data and Benchmark, where we manually collect and synthesize 20K drag trajectories across five domains (e.g. PowerPoint, Adobe Premiere Pro), and introduce ScreenDrag, a benchmark with comprehensive online and offline evaluation protocols for assessing GUI agents' drag capabilities. Our experiments show that proprietary GUI agents still struggle on ScreenDrag (e.g. Operator scores 13.27, and the best Gemini-2.5-CUA reaches 22.18). In contrast, ShowUI-$π$ achieves 26.98 with only 450M parameters, underscoring both the difficulty of the task and the effectiveness of our approach. We hope this work advances GUI agents toward human-like dexterous control in digital world. The code is available at https://github.com/showlab/showui-pi.

Meer Wetenschap podcasts

Over Daily Paper Cast

We update every weekday to discuss highest-voted papers from Huggingface Daily Paper (https://huggingface.co/papers). Both the podcast scripts and audio are generated by AI. Feedback and suggestions are welcome! Email us: [email protected] Creator: Jingwen Liang, 3D ML, https://www.linkedin.com/in/jingwen-liang/ Gengyu Wang, LLM ML, http://wanggengyu.com Listen on: Spotify: https://open.spotify.com/show/21nrhmdaA8qoBiH8q03NXL Apple Podcast: https://podcasts.apple.com/us/podcast/daily-paper-cast/id1777620236 Cover Image by Kawen Kuang https://kawen.art
Podcast website

Luister naar Daily Paper Cast, NRC Onbehaarde Apen en vele andere podcasts van over de hele wereld met de radio.net-app

Ontvang de gratis radio.net app

  • Zenders en podcasts om te bookmarken
  • Streamen via Wi-Fi of Bluetooth
  • Ondersteunt Carplay & Android Auto
  • Veel andere app-functies
Social
v8.2.2 | © 2007-2026 radio.de GmbH
Generated: 1/15/2026 - 6:55:13 AM