Powered by RND
PodcastsWetenschapDaily Paper Cast

Daily Paper Cast

Jingwen Liang, Gengyu Wang
Daily Paper Cast
Nieuwste aflevering

Beschikbare afleveringen

5 van 1387
  • VIDEOP2R: Video Understanding from Perception to Reasoning
    🤗 Upvotes: 70 | cs.CV, cs.AI, cs.LG Authors: Yifan Jiang, Yueying Wang, Rui Zhao, Toufiq Parag, Zhimin Chen, Zhenyu Liao, Jayakrishnan Unnikrishnan Title: VIDEOP2R: Video Understanding from Perception to Reasoning Arxiv: http://arxiv.org/abs/2511.11113v1 Abstract: Reinforcement fine-tuning (RFT), a two-stage framework consisting of supervised fine-tuning (SFT) and reinforcement learning (RL) has shown promising results on improving reasoning ability of large language models (LLMs). Yet extending RFT to large video language models (LVLMs) remains challenging. We propose VideoP2R, a novel process-aware video RFT framework that enhances video reasoning by modeling perception and reasoning as distinct processes. In the SFT stage, we develop a three-step pipeline to generate VideoP2R-CoT-162K, a high-quality, process-aware chain-of-thought (CoT) dataset for perception and reasoning. In the RL stage, we introduce a novel process-aware group relative policy optimization (PA-GRPO) algorithm that supplies separate rewards for perception and reasoning. Extensive experiments show that VideoP2R achieves state-of-the-art (SotA) performance on six out of seven video reasoning and understanding benchmarks. Ablation studies further confirm the effectiveness of our process-aware modeling and PA-GRPO and demonstrate that model's perception output is information-sufficient for downstream reasoning.
    --------  
    25:08
  • Think-at-Hard: Selective Latent Iterations to Improve Reasoning Language Models
    🤗 Upvotes: 66 | cs.CL, cs.AI, cs.LG, cs.PF Authors: Tianyu Fu, Yichen You, Zekai Chen, Guohao Dai, Huazhong Yang, Yu Wang Title: Think-at-Hard: Selective Latent Iterations to Improve Reasoning Language Models Arxiv: http://arxiv.org/abs/2511.08577v1 Abstract: Improving reasoning capabilities of Large Language Models (LLMs), especially under parameter constraints, is crucial for real-world applications. Prior work proposes recurrent transformers, which allocate a fixed number of extra iterations per token to improve generation quality. After the first, standard forward pass, instead of verbalization, last-layer hidden states are fed back as inputs for additional iterations to refine token predictions. Yet we identify a latent overthinking phenomenon: easy token predictions that are already correct after the first pass are sometimes revised into errors in additional iterations. To address this, we propose Think-at-Hard (TaH), a dynamic latent thinking method that iterates deeper only at hard tokens. It employs a lightweight neural decider to trigger latent iterations only at tokens that are likely incorrect after the standard forward pass. During latent iterations, Low-Rank Adaptation (LoRA) modules shift the LLM objective from general next-token prediction to focused hard-token refinement. We further introduce a duo-causal attention mechanism that extends attention from the token sequence dimension to an additional iteration depth dimension. This enables cross-iteration information flow while maintaining full sequential parallelism. Experiments show that TaH boosts LLM reasoning performance across five challenging benchmarks while maintaining the same parameter count. Compared with baselines that iterate twice for all output tokens, TaH delivers 8.1-11.3% accuracy gains while exempting 94% of tokens from the second iteration. Against strong single-iteration Qwen3 models finetuned with the same data, it also delivers 4.0-5.0% accuracy gains. When allowing less than 3% additional parameters from LoRA and the iteration decider, the gains increase to 8.5-12.6% and 5.3-5.4%, respectively. Our code is available at https://github.com/thu-nics/TaH.
    --------  
    24:58
  • AraLingBench A Human-Annotated Benchmark for Evaluating Arabic Linguistic Capabilities of Large Language Models
    🤗 Upvotes: 58 | cs.CL, cs.AI, cs.LG Authors: Mohammad Zbib, Hasan Abed Al Kader Hammoud, Sina Mukalled, Nadine Rizk, Fatima Karnib, Issam Lakkis, Ammar Mohanna, Bernard Ghanem Title: AraLingBench A Human-Annotated Benchmark for Evaluating Arabic Linguistic Capabilities of Large Language Models Arxiv: http://arxiv.org/abs/2511.14295v1 Abstract: We present AraLingBench: a fully human annotated benchmark for evaluating the Arabic linguistic competence of large language models (LLMs). The benchmark spans five core categories: grammar, morphology, spelling, reading comprehension, and syntax, through 150 expert-designed multiple choice questions that directly assess structural language understanding. Evaluating 35 Arabic and bilingual LLMs reveals that current models demonstrate strong surface level proficiency but struggle with deeper grammatical and syntactic reasoning. AraLingBench highlights a persistent gap between high scores on knowledge-based benchmarks and true linguistic mastery, showing that many models succeed through memorization or pattern recognition rather than authentic comprehension. By isolating and measuring fundamental linguistic skills, AraLingBench provides a diagnostic framework for developing Arabic LLMs. The full evaluation code is publicly available on GitHub.
    --------  
    23:48
  • A Style is Worth One Code: Unlocking Code-to-Style Image Generation with Discrete Style Space
    🤗 Upvotes: 41 | cs.CV, cs.AI Authors: Huijie Liu, Shuhao Cui, Haoxiang Cao, Shuai Ma, Kai Wu, Guoliang Kang Title: A Style is Worth One Code: Unlocking Code-to-Style Image Generation with Discrete Style Space Arxiv: http://arxiv.org/abs/2511.10555v4 Abstract: Innovative visual stylization is a cornerstone of artistic creation, yet generating novel and consistent visual styles remains a significant challenge. Existing generative approaches typically rely on lengthy textual prompts, reference images, or parameter-efficient fine-tuning to guide style-aware image generation, but often struggle with style consistency, limited creativity, and complex style representations. In this paper, we affirm that a style is worth one numerical code by introducing the novel task, code-to-style image generation, which produces images with novel, consistent visual styles conditioned solely on a numerical style code. To date, this field has only been primarily explored by the industry (e.g., Midjourney), with no open-source research from the academic community. To fill this gap, we propose CoTyle, the first open-source method for this task. Specifically, we first train a discrete style codebook from a collection of images to extract style embeddings. These embeddings serve as conditions for a text-to-image diffusion model (T2I-DM) to generate stylistic images. Subsequently, we train an autoregressive style generator on the discrete style embeddings to model their distribution, allowing the synthesis of novel style embeddings. During inference, a numerical style code is mapped to a unique style embedding by the style generator, and this embedding guides the T2I-DM to generate images in the corresponding style. Unlike existing methods, our method offers unparalleled simplicity and diversity, unlocking a vast space of reproducible styles from minimal input. Extensive experiments validate that CoTyle effectively turns a numerical code into a style controller, demonstrating a style is worth one code.
    --------  
    23:48
  • Can World Simulators Reason? Gen-ViRe: A Generative Visual Reasoning Benchmark
    🤗 Upvotes: 32 | cs.CV Authors: Xinxin Liu, Zhaopan Xu, Kai Wang, Yong Jae Lee, Yuzhang Shang Title: Can World Simulators Reason? Gen-ViRe: A Generative Visual Reasoning Benchmark Arxiv: http://arxiv.org/abs/2511.13853v1 Abstract: While Chain-of-Thought (CoT) prompting enables sophisticated symbolic reasoning in LLMs, it remains confined to discrete text and cannot simulate the continuous, physics-governed dynamics of the real world. Recent video generation models have emerged as potential world simulators through Chain-of-Frames (CoF) reasoning -- materializing thought as frame-by-frame visual sequences, with each frame representing a physically-grounded reasoning step. Despite compelling demonstrations, a challenge persists: existing benchmarks, focusing on fidelity or alignment, do not assess CoF reasoning and thus cannot measure core cognitive abilities in multi-step planning, algorithmic logic, or abstract pattern extrapolation. This evaluation void prevents systematic understanding of model capabilities and principled guidance for improvement. We introduce Gen-ViRe (Generative Visual Reasoning Benchmark), a framework grounded in cognitive science and real-world AI applications, which decomposes CoF reasoning into six cognitive dimensions -- from perceptual logic to abstract planning -- and 24 subtasks. Through multi-source data curation, minimal prompting protocols, and hybrid VLM-assisted evaluation with detailed criteria, Gen-ViRe delivers the first quantitative assessment of video models as reasoners. Our experiments on SOTA systems reveal substantial discrepancies between impressive visual quality and actual reasoning depth, establishing baselines and diagnostic tools to advance genuine world simulators.
    --------  
    22:39

Meer Wetenschap podcasts

Over Daily Paper Cast

We update every weekday to discuss highest-voted papers from Huggingface Daily Paper (https://huggingface.co/papers). Both the podcast scripts and audio are generated by AI. Feedback and suggestions are welcome! Email us: [email protected] Creator: Jingwen Liang, 3D ML, https://www.linkedin.com/in/jingwen-liang/ Gengyu Wang, LLM ML, http://wanggengyu.com Listen on: Spotify: https://open.spotify.com/show/21nrhmdaA8qoBiH8q03NXL Apple Podcast: https://podcasts.apple.com/us/podcast/daily-paper-cast/id1777620236 Cover Image by Kawen Kuang https://kawen.art
Podcast website

Luister naar Daily Paper Cast, NRC Onbehaarde Apen en vele andere podcasts van over de hele wereld met de radio.net-app

Ontvang de gratis radio.net app

  • Zenders en podcasts om te bookmarken
  • Streamen via Wi-Fi of Bluetooth
  • Ondersteunt Carplay & Android Auto
  • Veel andere app-functies
Social
v7.23.12 | © 2007-2025 radio.de GmbH
Generated: 11/20/2025 - 12:07:05 PM