PodcastsWetenschapDaily Paper Cast

Daily Paper Cast

Jingwen Liang, Gengyu Wang
Daily Paper Cast
Nieuwste aflevering

1562 afleveringen

  • Daily Paper Cast

    Can LLMs Predict Their Own Failures? Self-Awareness via Internal Circuits

    07-1-2026 | 22 Min.

    🤗 Upvotes: 48 | cs.CL Authors: Amirhosein Ghasemabadi, Di Niu Title: Can LLMs Predict Their Own Failures? Self-Awareness via Internal Circuits Arxiv: http://arxiv.org/abs/2512.20578v2 Abstract: Large language models (LLMs) generate fluent and complex outputs but often fail to recognize their own mistakes and hallucinations. Existing approaches typically rely on external judges, multi-sample consistency, or text-based self-critique, which incur additional compute or correlate weakly with true correctness. We ask: can LLMs predict their own failures by inspecting internal states during inference? We introduce Gnosis, a lightweight self-awareness mechanism that enables frozen LLMs to perform intrinsic self-verification by decoding signals from hidden states and attention patterns. Gnosis passively observes internal traces, compresses them into fixed-budget descriptors, and predicts correctness with negligible inference cost, adding only ~5M parameters and operating independently of sequence length. Across math reasoning, open-domain question answering, and academic knowledge benchmarks, and over frozen backbones ranging from 1.7B to 20B parameters, Gnosis consistently outperforms strong internal baselines and large external judges in both accuracy and calibration. Moreover, it generalizes zero-shot to partial generations, enabling early detection of failing trajectories and compute-aware control. These results show that reliable correctness cues are intrinsic to generation process and can be extracted efficiently without external supervision.

  • Daily Paper Cast

    NextFlow: Unified Sequential Modeling Activates Multimodal Understanding and Generation

    07-1-2026 | 26 Min.

    🤗 Upvotes: 45 | cs.CV, cs.AI Authors: Huichao Zhang, Liao Qu, Yiheng Liu, Hang Chen, Yangyang Song, Yongsheng Dong, Shikun Sun, Xian Li, Xu Wang, Yi Jiang, Hu Ye, Bo Chen, Yiming Gao, Peng Liu, Akide Liu, Zhipeng Yang, Qili Deng, Linjie Xing, Jiyang Liu, Zhao Wang, Yang Zhou, Mingcong Liu, Yi Zhang, Qian He, Xiwei Hu, Zhongqi Qi, Jie Shao, Zhiye Fu, Shuai Wang, Fangmin Chen, Xuezhi Chai, Zhihua Wu, Yitong Wang, Zehuan Yuan, Daniel K. Du, Xinglong Wu Title: NextFlow: Unified Sequential Modeling Activates Multimodal Understanding and Generation Arxiv: http://arxiv.org/abs/2601.02204v1 Abstract: We present NextFlow, a unified decoder-only autoregressive transformer trained on 6 trillion interleaved text-image discrete tokens. By leveraging a unified vision representation within a unified autoregressive architecture, NextFlow natively activates multimodal understanding and generation capabilities, unlocking abilities of image editing, interleaved content and video generation. Motivated by the distinct nature of modalities - where text is strictly sequential and images are inherently hierarchical - we retain next-token prediction for text but adopt next-scale prediction for visual generation. This departs from traditional raster-scan methods, enabling the generation of 1024x1024 images in just 5 seconds - orders of magnitude faster than comparable AR models. We address the instabilities of multi-scale generation through a robust training recipe. Furthermore, we introduce a prefix-tuning strategy for reinforcement learning. Experiments demonstrate that NextFlow achieves state-of-the-art performance among unified models and rivals specialized diffusion baselines in visual quality.

  • Daily Paper Cast

    DreamID-V:Bridging the Image-to-Video Gap for High-Fidelity Face Swapping via Diffusion Transformer

    07-1-2026 | 23 Min.

    🤗 Upvotes: 36 | cs.CV Authors: Xu Guo, Fulong Ye, Xinghui Li, Pengqi Tu, Pengze Zhang, Qichao Sun, Songtao Zhao, Xiangwang Hou, Qian He Title: DreamID-V:Bridging the Image-to-Video Gap for High-Fidelity Face Swapping via Diffusion Transformer Arxiv: http://arxiv.org/abs/2601.01425v1 Abstract: Video Face Swapping (VFS) requires seamlessly injecting a source identity into a target video while meticulously preserving the original pose, expression, lighting, background, and dynamic information. Existing methods struggle to maintain identity similarity and attribute preservation while preserving temporal consistency. To address the challenge, we propose a comprehensive framework to seamlessly transfer the superiority of Image Face Swapping (IFS) to the video domain. We first introduce a novel data pipeline SyncID-Pipe that pre-trains an Identity-Anchored Video Synthesizer and combines it with IFS models to construct bidirectional ID quadruplets for explicit supervision. Building upon paired data, we propose the first Diffusion Transformer-based framework DreamID-V, employing a core Modality-Aware Conditioning module to discriminatively inject multi-model conditions. Meanwhile, we propose a Synthetic-to-Real Curriculum mechanism and an Identity-Coherence Reinforcement Learning strategy to enhance visual realism and identity consistency under challenging scenarios. To address the issue of limited benchmarks, we introduce IDBench-V, a comprehensive benchmark encompassing diverse scenes. Extensive experiments demonstrate DreamID-V outperforms state-of-the-art methods and further exhibits exceptional versatility, which can be seamlessly adapted to various swap-related tasks.

  • Daily Paper Cast

    VAR RL Done Right: Tackling Asynchronous Policy Conflicts in Visual Autoregressive Generation

    07-1-2026 | 22 Min.

    🤗 Upvotes: 29 | cs.CV, cs.LG Authors: Shikun Sun, Liao Qu, Huichao Zhang, Yiheng Liu, Yangyang Song, Xian Li, Xu Wang, Yi Jiang, Daniel K. Du, Xinglong Wu, Jia Jia Title: VAR RL Done Right: Tackling Asynchronous Policy Conflicts in Visual Autoregressive Generation Arxiv: http://arxiv.org/abs/2601.02256v1 Abstract: Visual generation is dominated by three paradigms: AutoRegressive (AR), diffusion, and Visual AutoRegressive (VAR) models. Unlike AR and diffusion, VARs operate on heterogeneous input structures across their generation steps, which creates severe asynchronous policy conflicts. This issue becomes particularly acute in reinforcement learning (RL) scenarios, leading to unstable training and suboptimal alignment. To resolve this, we propose a novel framework to enhance Group Relative Policy Optimization (GRPO) by explicitly managing these conflicts. Our method integrates three synergistic components: 1) a stabilizing intermediate reward to guide early-stage generation; 2) a dynamic time-step reweighting scheme for precise credit assignment; and 3) a novel mask propagation algorithm, derived from principles of Reward Feedback Learning (ReFL), designed to isolate optimization effects both spatially and temporally. Our approach demonstrates significant improvements in sample quality and objective alignment over the vanilla GRPO baseline, enabling robust and effective optimization for VAR models.

  • Daily Paper Cast

    GARDO: Reinforcing Diffusion Models without Reward Hacking

    07-1-2026 | 24 Min.

    🤗 Upvotes: 23 | cs.LG, cs.AI, cs.CV Authors: Haoran He, Yuxiao Ye, Jie Liu, Jiajun Liang, Zhiyong Wang, Ziyang Yuan, Xintao Wang, Hangyu Mao, Pengfei Wan, Ling Pan Title: GARDO: Reinforcing Diffusion Models without Reward Hacking Arxiv: http://arxiv.org/abs/2512.24138v1 Abstract: Fine-tuning diffusion models via online reinforcement learning (RL) has shown great potential for enhancing text-to-image alignment. However, since precisely specifying a ground-truth objective for visual tasks remains challenging, the models are often optimized using a proxy reward that only partially captures the true goal. This mismatch often leads to reward hacking, where proxy scores increase while real image quality deteriorates and generation diversity collapses. While common solutions add regularization against the reference policy to prevent reward hacking, they compromise sample efficiency and impede the exploration of novel, high-reward regions, as the reference policy is usually sub-optimal. To address the competing demands of sample efficiency, effective exploration, and mitigation of reward hacking, we propose Gated and Adaptive Regularization with Diversity-aware Optimization (GARDO), a versatile framework compatible with various RL algorithms. Our key insight is that regularization need not be applied universally; instead, it is highly effective to selectively penalize a subset of samples that exhibit high uncertainty. To address the exploration challenge, GARDO introduces an adaptive regularization mechanism wherein the reference model is periodically updated to match the capabilities of the online policy, ensuring a relevant regularization target. To address the mode collapse issue in RL, GARDO amplifies the rewards for high-quality samples that also exhibit high diversity, encouraging mode coverage without destabilizing the optimization process. Extensive experiments across diverse proxy rewards and hold-out unseen metrics consistently show that GARDO mitigates reward hacking and enhances generation diversity without sacrificing sample efficiency or exploration, highlighting its effectiveness and robustness.

Meer Wetenschap podcasts

Over Daily Paper Cast

We update every weekday to discuss highest-voted papers from Huggingface Daily Paper (https://huggingface.co/papers). Both the podcast scripts and audio are generated by AI. Feedback and suggestions are welcome! Email us: [email protected] Creator: Jingwen Liang, 3D ML, https://www.linkedin.com/in/jingwen-liang/ Gengyu Wang, LLM ML, http://wanggengyu.com Listen on: Spotify: https://open.spotify.com/show/21nrhmdaA8qoBiH8q03NXL Apple Podcast: https://podcasts.apple.com/us/podcast/daily-paper-cast/id1777620236 Cover Image by Kawen Kuang https://kawen.art
Podcast website

Luister naar Daily Paper Cast, Ondertussen in de kosmos en vele andere podcasts van over de hele wereld met de radio.net-app

Ontvang de gratis radio.net app

  • Zenders en podcasts om te bookmarken
  • Streamen via Wi-Fi of Bluetooth
  • Ondersteunt Carplay & Android Auto
  • Veel andere app-functies
Social
v8.2.2 | © 2007-2026 radio.de GmbH
Generated: 1/7/2026 - 4:17:49 PM