PodcastsWetenschapDaily Paper Cast

Daily Paper Cast

Jingwen Liang, Gengyu Wang
Daily Paper Cast
Nieuwste aflevering

1589 afleveringen

  • Daily Paper Cast

    BabyVision: Visual Reasoning Beyond Language

    14-1-2026 | 22 Min.

    🤗 Upvotes: 156 | cs.CV, cs.CL Authors: Liang Chen, Weichu Xie, Yiyan Liang, Hongfeng He, Hans Zhao, Zhibo Yang, Zhiqi Huang, Haoning Wu, Haoyu Lu, Y. charles, Yiping Bao, Yuantao Fan, Guopeng Li, Haiyang Shen, Xuanzhong Chen, Wendong Xu, Shuzheng Si, Zefan Cai, Wenhao Chai, Ziqi Huang, Fangfu Liu, Tianyu Liu, Baobao Chang, Xiaobo Hu, Kaiyuan Chen, Yixin Ren, Yang Liu, Yuan Gong, Kuan Li Title: BabyVision: Visual Reasoning Beyond Language Arxiv: http://arxiv.org/abs/2601.06521v1 Abstract: While humans develop core visual skills long before acquiring language, contemporary Multimodal LLMs (MLLMs) still rely heavily on linguistic priors to compensate for their fragile visual understanding. We uncovered a crucial fact: state-of-the-art MLLMs consistently fail on basic visual tasks that humans, even 3-year-olds, can solve effortlessly. To systematically investigate this gap, we introduce BabyVision, a benchmark designed to assess core visual abilities independent of linguistic knowledge for MLLMs. BabyVision spans a wide range of tasks, with 388 items divided into 22 subclasses across four key categories. Empirical results and human evaluation reveal that leading MLLMs perform significantly below human baselines. Gemini3-Pro-Preview scores 49.7, lagging behind 6-year-old humans and falling well behind the average adult score of 94.1. These results show despite excelling in knowledge-heavy evaluations, current MLLMs still lack fundamental visual primitives. Progress in BabyVision represents a step toward human-level visual perception and reasoning capabilities. We also explore solving visual reasoning with generation models by proposing BabyVision-Gen and automatic evaluation toolkit. Our code and benchmark data are released at https://github.com/UniPat-AI/BabyVision for reproduction.

  • Daily Paper Cast

    PaCoRe: Learning to Scale Test-Time Compute with Parallel Coordinated Reasoning

    14-1-2026 | 23 Min.

    🤗 Upvotes: 65 | cs.LG Authors: Jingcheng Hu, Yinmin Zhang, Shijie Shang, Xiaobo Yang, Yue Peng, Zhewei Huang, Hebin Zhou, Xin Wu, Jie Cheng, Fanqi Wan, Xiangwen Kong, Chengyuan Yao, Kaiwen Yan, Ailin Huang, Hongyu Zhou, Qi Han, Zheng Ge, Daxin Jiang, Xiangyu Zhang, Heung-Yeung Shum Title: PaCoRe: Learning to Scale Test-Time Compute with Parallel Coordinated Reasoning Arxiv: http://arxiv.org/abs/2601.05593v1 Abstract: We introduce Parallel Coordinated Reasoning (PaCoRe), a training-and-inference framework designed to overcome a central limitation of contemporary language models: their inability to scale test-time compute (TTC) far beyond sequential reasoning under a fixed context window. PaCoRe departs from the traditional sequential paradigm by driving TTC through massive parallel exploration coordinated via a message-passing architecture in multiple rounds. Each round launches many parallel reasoning trajectories, compacts their findings into context-bounded messages, and synthesizes these messages to guide the next round and ultimately produce the final answer. Trained end-to-end with large-scale, outcome-based reinforcement learning, the model masters the synthesis abilities required by PaCoRe and scales to multi-million-token effective TTC without exceeding context limits. The approach yields strong improvements across diverse domains, and notably pushes reasoning beyond frontier systems in mathematics: an 8B model reaches 94.5% on HMMT 2025, surpassing GPT-5's 93.2% by scaling effective TTC to roughly two million tokens. We open-source model checkpoints, training data, and the full inference pipeline to accelerate follow-up work.

  • Daily Paper Cast

    MHLA: Restoring Expressivity of Linear Attention via Token-Level Multi-Head

    14-1-2026 | 22 Min.

    🤗 Upvotes: 32 | cs.CV, cs.AI Authors: Kewei Zhang, Ye Huang, Yufan Deng, Jincheng Yu, Junsong Chen, Huan Ling, Enze Xie, Daquan Zhou Title: MHLA: Restoring Expressivity of Linear Attention via Token-Level Multi-Head Arxiv: http://arxiv.org/abs/2601.07832v1 Abstract: While the Transformer architecture dominates many fields, its quadratic self-attention complexity hinders its use in large-scale applications. Linear attention offers an efficient alternative, but its direct application often degrades performance, with existing fixes typically re-introducing computational overhead through extra modules (e.g., depthwise separable convolution) that defeat the original purpose. In this work, we identify a key failure mode in these methods: global context collapse, where the model loses representational diversity. To address this, we propose Multi-Head Linear Attention (MHLA), which preserves this diversity by computing attention within divided heads along the token dimension. We prove that MHLA maintains linear complexity while recovering much of the expressive power of softmax attention, and verify its effectiveness across multiple domains, achieving a 3.6\% improvement on ImageNet classification, a 6.3\% gain on NLP, a 12.6\% improvement on image generation, and a 41\% enhancement on video generation under the same time complexity.

  • Daily Paper Cast

    X-Coder: Advancing Competitive Programming with Fully Synthetic Tasks, Solutions, and Tests

    14-1-2026 | 22 Min.

    🤗 Upvotes: 30 | cs.CL, cs.LG Authors: Jie Wu, Haoling Li, Xin Zhang, Jiani Guo, Jane Luo, Steven Liu, Yangyu Huang, Ruihang Chu, Scarlett Li, Yujiu Yang Title: X-Coder: Advancing Competitive Programming with Fully Synthetic Tasks, Solutions, and Tests Arxiv: http://arxiv.org/abs/2601.06953v1 Abstract: Competitive programming presents great challenges for Code LLMs due to its intensive reasoning demands and high logical complexity. However, current Code LLMs still rely heavily on real-world data, which limits their scalability. In this paper, we explore a fully synthetic approach: training Code LLMs with entirely generated tasks, solutions, and test cases, to empower code reasoning models without relying on real-world data. To support this, we leverage feature-based synthesis to propose a novel data synthesis pipeline called SynthSmith. SynthSmith shows strong potential in producing diverse and challenging tasks, along with verified solutions and tests, supporting both supervised fine-tuning and reinforcement learning. Based on the proposed synthetic SFT and RL datasets, we introduce the X-Coder model series, which achieves a notable pass rate of 62.9 avg@8 on LiveCodeBench v5 and 55.8 on v6, outperforming DeepCoder-14B-Preview and AReal-boba2-14B despite having only 7B parameters. In-depth analysis reveals that scaling laws hold on our synthetic dataset, and we explore which dimensions are more effective to scale. We further provide insights into code-centric reinforcement learning and highlight the key factors that shape performance through detailed ablations and analysis. Our findings demonstrate that scaling high-quality synthetic data and adopting staged training can greatly advance code reasoning, while mitigating reliance on real-world coding data.

  • Daily Paper Cast

    GlimpRouter: Efficient Collaborative Inference by Glimpsing One Token of Thoughts

    14-1-2026 | 20 Min.

    🤗 Upvotes: 26 | cs.AI Authors: Wenhao Zeng, Xuteng Zhang, Yuling Shi, Chao Hu, Yuting Chen, Beijun Shen, Xiaodong Gu Title: GlimpRouter: Efficient Collaborative Inference by Glimpsing One Token of Thoughts Arxiv: http://arxiv.org/abs/2601.05110v1 Abstract: Large Reasoning Models (LRMs) achieve remarkable performance by explicitly generating multi-step chains of thought, but this capability incurs substantial inference latency and computational cost. Collaborative inference offers a promising solution by selectively allocating work between lightweight and large models, yet a fundamental challenge remains: determining when a reasoning step requires the capacity of a large model or the efficiency of a small model. Existing routing strategies either rely on local token probabilities or post-hoc verification, introducing significant inference overhead. In this work, we propose a novel perspective on step-wise collaboration: the difficulty of a reasoning step can be inferred from its very first token. Inspired by the "Aha Moment" phenomenon in LRMs, we show that the entropy of the initial token serves as a strong predictor of step difficulty. Building on this insight, we introduce GlimpRouter, a training-free step-wise collaboration framework. GlimpRouter employs a lightweight model to generate only the first token of each reasoning step and routes the step to a larger model only when the initial token entropy exceeds a threshold. Experiments on multiple benchmarks demonstrate that our approach significantly reduces inference latency while preserving accuracy. For instance, GlimpRouter attains a substantial 10.7% improvement in accuracy while reducing inference latency by 25.9% compared to a standalone large model on AIME25. These results suggest a simple yet effective mechanism for reasoning: allocating computation based on a glimpse of thought rather than full-step evaluation.

Meer Wetenschap podcasts

Over Daily Paper Cast

We update every weekday to discuss highest-voted papers from Huggingface Daily Paper (https://huggingface.co/papers). Both the podcast scripts and audio are generated by AI. Feedback and suggestions are welcome! Email us: [email protected] Creator: Jingwen Liang, 3D ML, https://www.linkedin.com/in/jingwen-liang/ Gengyu Wang, LLM ML, http://wanggengyu.com Listen on: Spotify: https://open.spotify.com/show/21nrhmdaA8qoBiH8q03NXL Apple Podcast: https://podcasts.apple.com/us/podcast/daily-paper-cast/id1777620236 Cover Image by Kawen Kuang https://kawen.art
Podcast website

Luister naar Daily Paper Cast, Ondertussen in de kosmos en vele andere podcasts van over de hele wereld met de radio.net-app

Ontvang de gratis radio.net app

  • Zenders en podcasts om te bookmarken
  • Streamen via Wi-Fi of Bluetooth
  • Ondersteunt Carplay & Android Auto
  • Veel andere app-functies
Social
v8.2.2 | © 2007-2026 radio.de GmbH
Generated: 1/14/2026 - 11:14:32 AM