PodcastsZaken en persoonlijke financiënLatent Space: The AI Engineer Podcast

Latent Space: The AI Engineer Podcast

swyx + Alessio
Latent Space: The AI Engineer Podcast
Nieuwste aflevering

173 afleveringen

  • Latent Space: The AI Engineer Podcast

    Steve Yegge's Vibe Coding Manifesto: Why Claude Code Isn't It & What Comes After the IDE

    26-12-2025

    Note: Steve and Gene’s talk on Vibe Coding and the post IDE world was one of the top talks of AIE CODE: https://www.youtube.com/watch?v=7Dtu2bilcFs&t=1019s&pp=0gcJCU0KAYcqIYzv From building legendary platforms at Google and Amazon to authoring one of the most influential essays on AI-powered development (Revenge of the Junior Developer, quoted by Dario Amodei himself), Steve Yegge has spent decades at the frontier of software engineering—and now he's leading the charge into what he calls the "factory farming" era of code. After stints at SourceGraph and building Beads (a purely vibe-coded issue tracker with tens of thousands of users), Steve co-authored The Vibe Coding Book and is now building VC (VibeCoder), an agent orchestration dashboard designed to move developers from writing code to managing fleets of AI agents that coordinate, parallelize, and ship features while you sleep. We sat down with Steve at AI Engineer Summit to dig into why Claude Code, Cursor, and the entire 2024 stack are already obsolete, what it actually takes to trust an agent after 2,000 hours of practice (hint: they will delete your production database if you anthropomorphize them), why the real skill is no longer writing code but orchestrating agents like a NASCAR pit crew, how merging has become the new wall that every 10x-productive team is hitting (and why one company's solution is literally "one engineer per repo"), the rise of multi-agent workflows where agents reserve files, message each other via MCP, and coordinate like a little village, why Steve believes if you're still using an IDE to write code by January 1st, you're a bad engineer, how the 12–15 year experience bracket is the most resistant demographic (and why their identity is tied to obsolete workflows), the hidden chaos inside OpenAI, Anthropic, and Google as they scale at breakneck speed, why rewriting from scratch is now faster than refactoring for a growing class of codebases, and his 2025 prediction: we're moving from subsistence agriculture to John Deere-scale factory farming of code, and the Luddite backlash is only just beginning. We discuss: Why Claude Code, Cursor, and agentic coding tools are already last year's tech—and what comes next: agent orchestration dashboards where you manage fleets, not write lines The 2,000-hour rule: why it takes a full year of daily use before you can predict what an LLM will do, and why trust = predictability, not capability Steve's hot take: if you're still using an IDE to develop code by January 1st, 2025, you're a bad engineer—because the abstraction layer has moved from models to full-stack agents The demographic most resistant to vibe coding: 12–15 years of experience, senior engineers whose identity is tied to the way they work today, and why they're about to become the interns Why anthropomorphizing LLMs is the biggest mistake: the "hot hand" fallacy, agent amnesia, and how Steve's agent once locked him out of prod by changing his password to "fix" a problem Should kids learn to code? Steve's take: learn to vibe code—understand functions, classes, architecture, and capabilities in a language-neutral way, but skip the syntax The 2025 vision: "factory farming of code" where orchestrators run Cloud Code, scrub output, plan-implement-review-test in loops, and unlock programming for non-programmers at scale — Steve Yegge X: https://x.com/steve_yegge Substack (Stevie's Tech Talks): https://steve-yegge.medium.com/ GitHub (VC / VibeCoder): https://github.com/yegge-labs Where to find Latent Space X: https://x.com/latentspacepod Substack: https://www.latent.space/ Chapters 00:00:00 Introduction: Steve Yegge on Vibe Coding and AI Engineering 00:00:59 The Backlash: Who Resists Vibe Coding and Why 00:04:26 The 2000 Hour Rule: Building Trust with AI Coding Tools 00:03:31 The January 1st Deadline: IDEs Are Becoming Obsolete 00:02:55 10X Productivity at OpenAI: The Performance Review Problem 00:07:49 The Hot Hand Fallacy: When AI Agents Betray Your Trust 00:11:12 Claude Code Isn't It: The Need for Agent Orchestration 00:15:20 The Orchestrator Revolution: From Cloud Code to Agent Villages 00:18:46 The Merge Wall: The Biggest Unsolved Problem in AI Coding 00:26:33 Never Rewrite Your Code - Until Now: Joel Spolsky Was Wrong 00:22:43 Factory Farming Code: The John Deere Era of Software 00:29:27 Google's Gemini Turnaround and the AI Lab Chaos 00:33:20 Should Your Kids Learn to Code? The New Answer 00:34:59 Code MCP and the Gossip Rate: Latest Vibe Coding Discoveries

  • Latent Space: The AI Engineer Podcast

    ⚡️GPT5-Codex-Max: Training Agents with Personality, Tools & Trust — Brian Fioca + Bill Chen, OpenAI

    26-12-2025

    From the frontlines of OpenAI's Codex and GPT-5 training teams, Bryan and Bill are building the future of AI-powered coding—where agents don't just autocomplete, they architect, refactor, and ship entire features while you sleep. We caught up with them at AI Engineer Conference right after the launch of Codex Max, OpenAI's newest long-running coding agent designed to work for 24+ hours straight, manage its own context, and spawn sub-agents to parallelize work across your entire codebase. We sat down with Bryan and Bill to dig into what it actually takes to train a model that developers trust—why personality, communication, and planning matter as much as raw capability, how Codex is trained with strong opinions about tools (it loves rg over grep, seriously), why the abstraction layer is moving from models to full-stack agents you can plug into VS Code or Zed, how OpenAI partners co-develop tool integrations and discover unexpected model habits (like renaming tools to match Codex's internal training), the rise of applied evals that measure real-world impact instead of academic benchmarks, why multi-turn evals are the next frontier (and Bryan's "job interview eval" idea), how coding agents are breaking out of code into personal automation, terminal workflows, and computer use, and their 2026 vision: coding agents trusted enough to handle the hardest refactors at any company, not just top-tier firms, and general enough to build integrations, organize your desktop, and unlock capabilities you'd never get access to otherwise. We discuss: What Codex Max is: a long-running coding agent that can work 24+ hours, manage its own context window, and spawn sub-agents for parallel work Why the name "Max": maximalist, maximization, speed and endurance—it's simply better and faster for the same problems Training for personality: communication, planning, context gathering, and checking your work as behavioral characteristics, not just capabilities How Codex develops habits like preferring rg over grep, and why renaming tools to match its training (e.g., terminal-style naming) dramatically improves tool-call performance The split between Codex (opinionated, agent-focused, optimized for the Codex harness) and GPT-5 (general, more durable across different tools and modalities) Why the abstraction layer is moving up: from prompting models to plugging in full agents (Codex, GitHub Copilot, Zed) that package the entire stack The rise of sub-agents and agents-using-agents: Codex Max spawning its own instances, handing off context, and parallelizing work across a codebase How OpenAI works with coding partners on the bleeding edge to co-develop tool integrations and discover what the model is actually good at The shift to applied evals: capturing real-world use cases instead of academic benchmarks, and why ~50% of OpenAI employees now use Codex daily Why multi-turn evals are the next frontier: LM-as-a-judge for entire trajectories, Bryan's "job interview eval" concept, and the need for a batch multi-turn eval API How coding agents are breaking out of code: personal automation, organizing desktops, terminal workflows, and "Devin for non-coding" use cases Why Slack is the ultimate UI for work, and how coding agents can become your personal automation layer for email, files, and everything in between The 2026 vision: more computer use, more trust, and coding agents capable enough that any company can access top-tier developer capabilities, not just elite firms — Bryan & Bill (OpenAI Codex Team) http://x.com/bfioca https://x.com/realchillben OpenAI Codex: https://openai.com/index/openai-codex/ Where to find Latent Space X: https://x.com/latentspacepod Substack: https://www.latent.space/ Chapters 00:00:00 Introduction: Latent Space Listeners at AI Engineer Code 00:01:27 Codex Max Launch: Training for Long-Running Coding Agents 00:03:01 Model Personality and Trust: Communication, Planning, and Self-Checking 00:05:20 Codex vs GPT-5: Opinionated Agents vs General Models 00:07:47 Tool Use and Model Habits: The Ripgrep Discovery 00:09:16 Personality Design: Verbosity vs Efficiency in Coding Agents 00:11:56 The Agent Abstraction Layer: Building on Top of Codex 00:14:08 Sub-Agents and Multi-Agent Patterns: The Future of Composition 00:16:11 Trust and Adoption: OpenAI Developers Using Codex Daily 00:17:21 Applied Evals: Real-World Testing vs Academic Benchmarks 00:19:15 Multi-Turn Evals and the Job Interview Pattern 00:21:35 Feature Request: Batch Multi-Turn Eval API 00:22:28 Beyond Code: Personal Automation and Computer Use 00:24:51 Vision-Native Agents and the UI Integration Challenge 00:25:02 2026 Predictions: Trust, Computer Use, and Democratized Excellence

  • Latent Space: The AI Engineer Podcast

    SAM 3: The Eyes for AI — Nikhila & Pengchuan (Meta Superintelligence), ft. Joseph Nelson (Roboflow)

    18-12-2025

    as with all demo-heavy and especially vision AI podcasts, we encourage watching along on our YouTube (and tossing us an upvote/subscribe if you like!) From SAM 1's 11-million-image data engine to SAM 2's memory-based video tracking, MSL’s Segment Anything project has redefined what's possible in computer vision. Now SAM 3 takes the next leap: concept segmentation—prompting with natural language like "yellow school bus" or "tablecloth" to detect, segment, and track every instance across images and video, in real time, with human-level exhaustivity. And with the latest SAM Audio (https://x.com/aiatmeta/status/2000980784425931067?s=46), SAM can now even segment audio output! We sat down with Nikhila Ravi (SAM lead at Meta) and Pengchuan Zhang (SAM 3 researcher) alongside Joseph Nelson (CEO, Roboflow) to unpack how SAM 3 unifies interactive segmentation, open-vocabulary detection, video tracking, and more into a single model that runs in 30ms on images and scales to real-time video on multi-GPU setups. We dig into the data engine that automated exhaustive annotation from two minutes per image down to 25 seconds using AI verifiers fine-tuned on Llama, the new SACO (Segment Anything with Concepts) benchmark with 200,000+ unique concepts vs. the previous 1.2k, how SAM 3 separates recognition from localization with a presence token, why decoupling the detector and tracker was critical to preserve object identity in video, how SAM 3 Agents unlock complex visual reasoning by pairing SAM 3 with multimodal LLMs like Gemini, and the real-world impact: 106 million smart polygons created on Roboflow saving humanity an estimated 130+ years of labeling time across fields from cancer research to underwater trash cleanup to autonomous vehicle perception. We discuss: What SAM 3 is: a unified model for concept-prompted segmentation, detection, and tracking in images and video using atomic visual concepts like "purple umbrella" or "watering can" How concept prompts work: short text phrases that find all instances of a category without manual clicks, plus visual exemplars (boxes, clicks) to refine and adapt on the fly Real-time performance: 30ms per image (100 detected objects on H200), 10 objects on 2×H200 video, 28 on 4×, 64 on 8×, with parallel inference and "fast mode" tracking The SACO benchmark: 200,000+ unique concepts vs. 1.2k in prior benchmarks, designed to capture the diversity of natural language and reach human-level exhaustivity The data engine: from 2 minutes per image (all-human) to 45 seconds (model-in-loop proposals) to 25 seconds (AI verifiers for mask quality and exhaustivity checks), fine-tuned on Llama 3.2 Why exhaustivity is central: every instance must be found, verified by AI annotators, and manually corrected only when the model misses—automating the hardest part of segmentation at scale Architecture innovations: presence token to separate recognition ("is it in the image?") from localization ("where is it?"), decoupled detector and tracker to preserve identity-agnostic detection vs. identity-preserving tracking Building on Meta's ecosystem: Perception Encoder, DINO v2 detector, Llama for data annotation, and SAM 2's memory-based tracking backbone SAM 3 Agents: using SAM 3 as a visual tool for multimodal LLMs (Gemini, Llama) to solve complex visual reasoning tasks like "find the bigger character" or "what distinguishes male from female in this image" Fine-tuning with as few as 10 examples: domain adaptation for specialized use cases (Waymo vehicles, medical imaging, OCR-heavy scenes) and the outsized impact of negative examples Real-world impact at Roboflow: 106M smart polygons created, saving 130+ years of labeling time across cancer research, underwater trash cleanup, autonomous drones, industrial automation, and more — MSL FAIR team Nikhila: https://www.linkedin.com/in/nikhilaravi/ Pengchuan: https://pzzhang.github.io/pzzhang/ Joseph Nelson X: https://x.com/josephofiowa LinkedIn: https://www.linkedin.com/in/josephofiowa/ [FLIGHTCAST_CHATPERS]

  • Latent Space: The AI Engineer Podcast

    ⚡️Jailbreaking AGI: Pliny the Liberator & John V on Red Teaming, BT6, and the Future of AI Security

    16-12-2025

    Note: this is Pliny and John’s first major podcast. Voices have been changed for opsec. From jailbreaking every frontier model and turning down Anthropic's Constitutional AI challenge to leading BT6, a 28-operator white-hat hacker collective obsessed with radical transparency and open-source AI security, Pliny the Liberator and John V are redefining what AI red-teaming looks like when you refuse to lobotomize models in the name of "safety." Pliny built his reputation crafting universal jailbreaks—skeleton keys that obliterate guardrails across modalities—and open-sourcing prompt templates like Libertas, predictive reasoning cascades, and the infamous "Pliny divider" that's now embedded so deep in model weights it shows up unbidden in WhatsApp messages. John V, coming from prompt engineering and computer vision, co-founded the Bossy Discord (40,000 members strong) and helps steer BT6's ethos: if you can't open-source the data, we're not interested. Together they've turned down enterprise gigs, pushed back on Anthropic's closed bounties, and insisted that real AI security happens at the system layer—not by bubble-wrapping latent space. We sat down with Pliny and John to dig into the mechanics of hard vs. soft jailbreaks, why multi-turn crescendo attacks were obvious to hackers years before academia "discovered" them, how segmented sub-agents let one jailbroken orchestrator weaponize Claude for real-world attacks (exactly as Pliny predicted 11 months before Anthropic's recent disclosure), why guardrails are security theater that punishes capability while doing nothing for real safety, the role of intuition and "bonding" with models to navigate latent space, how BT6 vets operators on skill and integrity, why they believe Mech Interp and open-source data are the path forward (not RLHF lobotomization), and their vision for a future where spatial intelligence, swarm robotics, and AGI alignment research happen in the open—bootstrapped, grassroots, and uncompromising. We discuss: What universal jailbreaks are: skeleton-key prompts that obliterate guardrails across models and modalities, and why they're central to Pliny's mission of "liberation" Hard vs. soft jailbreaks: single-input templates vs. multi-turn crescendo attacks, and why the latter were obvious to hackers long before academic papers The Libertas repo: predictive reasoning, the Library of Babel analogy, quotient dividers, weight-space seeds, and how introducing "steered chaos" pulls models out-of-distribution Why jailbreaking is 99% intuition and bonding with the model: probing token layers, syntax hacks, multilingual pivots, and forming a relationship to navigate latent space The Anthropic Constitutional AI challenge drama: UI bugs, judge failures, goalpost moving, the demand for open-source data, and why Pliny sat out the $30k bounty Why guardrails ≠ safety: security theater, the futility of locking down latent space when open-source is right behind, and why real safety work happens in meatspace (not RLHF) The weaponization of Claude: how segmented sub-agents let one jailbroken orchestrator execute malicious tasks (pyramid-builder analogy), and why Pliny predicted this exact TTP 11 months before Anthropic's disclosure BT6 hacker collective: 28 operators across two cohorts, vetted on skill and integrity, radical transparency, radical open-source, and the magic of moving the needle on AI security, swarm intelligence, blockchain, and robotics — Pliny the Liberator X: https://x.com/elder_plinius GitHub (Libertas): https://github.com/elder-plinius/L1B3RT45 John V X: https://x.com/JohnVersus BT6 & Bossy BT6: https://bt6.gg Bossy Discord: Search "Bossy Discord" or ask Pliny/John V on X Where to find Latent Space X: https://x.com/latentspacepod Substack: https://www.latent.space/ Chapters 00:00:00 Introduction: Meet Pliny the Liberator and John V 00:01:50 The Philosophy of AI Liberation and Jailbreaking 00:03:08 Universal Jailbreaks: Skeleton Keys to AI Models 00:04:24 The Cat-and-Mouse Game: Attackers vs Defenders 00:05:42 Security Theater vs Real Safety: The Fundamental Disconnect 00:08:51 Inside the Libertas Repo: Prompt Engineering as Art 00:16:22 The Anthropic Challenge Drama: UI Bugs and Open Source Data 00:23:30 From Jailbreaks to Weaponization: AI-Orchestrated Attacks 00:26:55 The BT6 Hacker Collective and BASI Community 00:34:46 AI Red Teaming: Full Stack Security Beyond the Model 00:38:06 Safety vs Security: Meat Space Solutions and Final Thoughts

  • Latent Space: The AI Engineer Podcast

    AI to AE's: Grit, Glean, and Kleiner Perkins' next Enterprise AI hit — Joubin Mirzadegan, Roadrunner

    12-12-2025

    Glean started as a Kleiner Perkins incubation and is now a $7B, $200m ARR Enterprise AI leader. Now KP has tapped its own podcaster to lead it’s next big swing. From building go-to-market the hard way in startups (and scaling Palo Alto Networks’ public cloud business) to joining Kleiner Perkins to help technical founders turn product edge into repeatable revenue, Joubin Mirzadegan has spent the last decade obsessing over one thing: distribution and how ideas actually spread, sell, and compound. That obsession took him from launching the CRO-only podcast Grit (https://www.youtube.com/playlist?list=PLRiWZFltuYPF8A6UGm74K2q29UwU-Kk9k) as a hiring wedge, to working alongside breakout companies like Glean and Windsurf, to now incubating Roadrunner which is an AI-native rethink of CPQ and quoting workflows as pricing models collapse from “seats” into consumption, bundles, renewals, and SKU sprawl. We sat down with Joubin to dig into the real mechanics of making conversations feel human (rolling early, never sending questions, temperature + lighting hacks), what Windsurf got right about “Google-class product and Salesforce-class distribution,” how to hire early sales leaders without getting fooled by shiny logos, why CPQ is quietly breaking the back of modern revenue teams, and his thesis for his new company and KP incubation Roadrunner (https://www.roadrunner.ai/): rebuild the data model from the ground up, co-develop with the hairiest design partners, and eventually use LLMs to recommend deal structures the way the best reps do without the Slack-channel chaos of deal desk. We discuss: How to make guests instantly comfortable: rolling early, no “are you ready?”, temperature, lighting, and room dynamics Why Joubin refuses to send questions in advance (and when you might have to anyway) The origin of the CRO-only podcast: using media as a hiring wedge and relationship engine The “commit to 100 episodes” mindset: why most shows die before they find their voice Founder vs exec interviews: why CEOs can speak more freely (and what it unlocks in conversation) What Glean taught him about enterprise AI: permissions, trust, and overcoming “category is dead” skepticism Design partners as the real unlock: why early believers matter and how co-development actually works Windsurf’s breakout: what it means to be serious about “Google-class product + Salesforce-class distribution” Why technical founders struggle with GTM and how KP built a team around sales, customer access, and demand gen Hiring early sales leaders: anti-patterns (logos), what to screen for (motivation), and why stage-fit is everything The CPQ problem & Roadrunner’s thesis: rebuilding CPQ/quoting from the data model up for modern complexity How “rules + SKUs + approvals” create a brittle graph and what it takes to model it without tipping over The two-year window: incumbents rebuilding slowly vs startups out-sprinting with AI-native architecture Where AI actually helps: quote generation, policy enforcement, approval routing, and deal recommendation loops — Joubin X: https://x.com/Joubinmir LinkedIn: https://www.linkedin.com/in/joubin-mirzadegan-66186854/ Where to find Latent Space X: https://x.com/latentspacepod Substack: https://www.latent.space/ Chapters 00:00:00 Introduction and the Zuck Interview Experience 00:03:26 The Genesis of the Grit Podcast: Hiring CROs Through Content 00:13:20 Podcast Philosophy: Creating Authentic Conversations 00:15:44 Working with Arvind at Glean: The Enterprise Search Breakthrough 00:26:20 Windsurf's Sales Machine: Google-Class Product Meets Salesforce-Class Distribution 00:30:28 Hiring Sales Leaders: Anti-Patterns and First Principles 00:39:02 The CPQ Problem: Why Salesforce and Legacy Tools Are Breaking 00:43:40 Introducing Roadrunner: Solving Enterprise Pricing with AI 00:49:19 Building Roadrunner: Team, Design Partners, and Data Model Challenges 00:59:35 High Performance Philosophy: Working Out Every Day and Reducing Friction 01:06:28 Defining Grit: Passion Plus Perseverance

Meer Zaken en persoonlijke financiën podcasts

Over Latent Space: The AI Engineer Podcast

The podcast by and for AI Engineers! In 2024, over 2 million readers and listeners came to Latent Space to hear about news, papers and interviews in Software 3.0. We cover Foundation Models changing every domain in Code Generation, Multimodality, AI Agents, GPU Infra and more, directly from the founders, builders, and thinkers involved in pushing the cutting edge. Striving to give you both the definitive take on the Current Thing down to the first introduction to the tech you'll be using in the next 3 months! We break news and exclusive interviews from OpenAI, Anthropic, Gemini, Meta (Soumith Chintala), Sierra (Bret Taylor), tiny (George Hotz), Databricks/MosaicML (Jon Frankle), Modular (Chris Lattner), Answer.ai (Jeremy Howard), et al. Full show notes always on https://latent.space
Podcast website

Luister naar Latent Space: The AI Engineer Podcast, Expert Intelligence with Paul Estes en vele andere podcasts van over de hele wereld met de radio.net-app

Ontvang de gratis radio.net app

  • Zenders en podcasts om te bookmarken
  • Streamen via Wi-Fi of Bluetooth
  • Ondersteunt Carplay & Android Auto
  • Veel andere app-functies
Social
v8.2.1 | © 2007-2025 radio.de GmbH
Generated: 12/27/2025 - 4:48:02 PM