Powered by RND
PodcastsTechnologieThe AI Fundamentalists
Luister naar The AI Fundamentalists in de app
Luister naar The AI Fundamentalists in de app
(2.067)(250 021)
Favorieten opslaan
Wekker
Slaaptimer

The AI Fundamentalists

Podcast The AI Fundamentalists
Dr. Andrew Clark & Sid Mangalik
A podcast about the fundamentals of safe and resilient modeling systems behind the AI that impacts our lives and our businesses. 

Beschikbare afleveringen

5 van 28
  • The future of AI: Exploring modeling paradigms
    Unlock the secrets to AI's modeling paradigms. We emphasize the importance of modeling practices, how they interact, and how they should be considered in relation to each other before you act. Using the right tool for the right job is key. We hope you enjoy these examples of where the greatest AI and machine learning techniques exist in your routine today.More AI agent disruptors (0:56)Proxy from London start-up Convergence AIAnother hit to OpenAI, this product is available for free, unlike OpenAI’s Operator. AI Paris Summit - What's next for regulation? (4:40)[Vice President] Vance tells Europeans that heavy regulation can kill AIUS federal administration withdrawing from the previous trend of sweeping big tech regulation on modeling systems.The EU is pushing to reduce bureaucracy but not regulatory pressureModeling paradigms explained (10:33)As companies look for an edge in high-stakes computations, we’ve seen best-in-class rediscovering expert system-based techniques that, with modern computing power, are breathing new light into them. Paradigm 1: Agents (11:23)Paradigm 2: Generative (14:26)Paradigm 3: Mathematical optimization (regression) (18:33)Paradigm 4: Predictive (classification) (23:19)Paradigm 5: Control theory (24:37)The right modeling paradigm for the job? (28:05)What did you think? Let us know.Do you have a question or a discussion topic for the AI Fundamentalists? Connect with them to comment on your favorite topics: LinkedIn - Episode summaries, shares of cited articles, and more. YouTube - Was it something that we said? Good. Share your favorite quotes. Visit our page - see past episodes and submit your feedback! It continues to inspire future episodes.
    --------  
    33:42
  • Agentic AI: Here we go again
    Agentic AI is the latest foray into big-bet promises for businesses and society at large. While promising autonomy and efficiency, AI agents raise fundamental questions about their accuracy, governance, and the potential pitfalls of over-reliance on automation. Does this story sound vaguely familiar? Hold that thought. This discussion about the over-under of certain promises is for you.Show NotesThe economics of LLMs and DeepSeek R1 (00:00:03)Reviewing recent developments in AI technologies and their implications Discussing the impact of DeepSeek’s R1 model on the AI landscape, NVIDIA The origins of agentic AI (00:07:12)Status quo of AI models to date: Is big tech backing away from promise of generative AI?Agentic AI designed to perceive, reason, act, and learnGovernance and agentic AI (00:13:12)Examining the tension between cost efficiency and performance risks [LangChain State of AI Agents Report]Highlighting governance concerns related to AI agents Issues with agentic AI implementation (00:21:01)Considering the limitations of AI agents and their adoption in the workplace Analyzing real-world experiments with AI agent technologies, like Devin What's next for complex and agentic AI systems (00:29:27)Offering insights on the cautious integration of these systems in business practicesEncouraging a thoughtful approach to leveraging AI capabilities for measurable outcomesWhat did you think? Let us know.Do you have a question or a discussion topic for the AI Fundamentalists? Connect with them to comment on your favorite topics: LinkedIn - Episode summaries, shares of cited articles, and more. YouTube - Was it something that we said? Good. Share your favorite quotes. Visit our page - see past episodes and submit your feedback! It continues to inspire future episodes.
    --------  
    30:21
  • Contextual integrity and differential privacy: Theory vs. application with Sebastian Benthall
    What if privacy could be as dynamic and socially aware as the communities it aims to protect? Sebastian Benthall, a senior research fellow from NYU’s Information Law Institute, shows us how privacy is complex. He uses Helen Nissenbaum’s work with contextual integrity and concepts in differential privacy to explain the complexity of privacy. Our talk explains how privacy is not just about protecting data but also about following social rules in different situations, from healthcare to education. These rules can change privacy regulations in big ways.Show notesIntro: Sebastian Benthall (0:03)Research: Designing Fiduciary Artificial Intelligence (Benthall, Shekman)Integrating Differential Privacy and Contextual Integrity (Benthall, Cummings)Exploring differential privacy and contextual integrity (1:05)Discussion about the origins of each subjectHow are differential privacy and contextual integrity used to enforce each other?Accepted context or legitimate context? (9:33)Does context develop from what society accepts over time?Approaches to determine situational context and legitimacyNext steps in contextual integrity (13:35)Is privacy as we know it ending?Areas where integrated differential privacy and contextual integrity can help (Cummings)Interpretations of differential privacy (14:30)Not a silver bulletNew questions posed from NIST about its applicationPrivacy determined by social norms (20:25)Game theory and its potential for understanding social normsAgents and governance: what will ultimately decide privacy? (25:27)Voluntary disclosures and the biases it can present towards groups that are least concerned with privacyAvoiding self-fulfilling prophecy from data and contextWhat did you think? Let us know.Do you have a question or a discussion topic for the AI Fundamentalists? Connect with them to comment on your favorite topics: LinkedIn - Episode summaries, shares of cited articles, and more. YouTube - Was it something that we said? Good. Share your favorite quotes. Visit our page - see past episodes and submit your feedback! It continues to inspire future episodes.
    --------  
    32:32
  • Model documentation: Beyond model cards and system cards in AI governance
    What if the secret to successful AI governance lies in understanding the evolution of model documentation? In this episode, our hosts challenge the common belief that model cards marked the start of documentation in AI. We explore model documentation practices, from their crucial beginnings in fields like finance to their adaptation in Silicon Valley. Our discussion also highlights the important role of early modelers and statisticians in advocating for a complete approach that includes the entire model development lifecycle.Show NotesModel documentation origins and best practices (1:03)Documenting a model is a comprehensive process that requires giving users and auditors clear understanding: Why was the model built? What data goes into a model? How is the model implemented? What does the model output? Model cards - pros and cons (7:33)Model cards for model reporting, Association for Computing MachineryEvolution from this research to Google's definition to todayHow the market perceives them vs. what they areWhy the analogy “nutrition labels for models” needs a closer lookSystem cards - pros and cons (12:03)To their credit, OpenAI system cards somewhat bridge the gap between proper model documentation and a model card.Contains complex descriptions of evaluation methodologies along with results; extra points for reporting red-teaming resultsRepresents 3rd-party opinions of the social and ethical implications of the release of the modelAutomating model documentation with generative AI (17:17)Finding the balance in automation in a great governance strategyGenerative AI can provide an assist in editing and personal workflowImproving documentation for AI governance (23:11)As model expert, engage from the beginning with writing the bulk of model documentation by hand.The exercise of documenting your models solidifies your understanding of the model's goals, values, and methods for the businessWhat did you think? Let us know.Do you have a question or a discussion topic for the AI Fundamentalists? Connect with them to comment on your favorite topics: LinkedIn - Episode summaries, shares of cited articles, and more. YouTube - Was it something that we said? Good. Share your favorite quotes. Visit our page - see past episodes and submit your feedback! It continues to inspire future episodes.
    --------  
    27:43
  • New paths in AI: Rethinking LLMs and model risk strategies
    Are businesses ready for large language models as a path to AI? In this episode, the hosts reflect on the past year of what has changed and what hasn’t changed in the world of LLMs. Join us as we debunk the latest myths and emphasize the importance of robust risk management in AI integration. The good news is that many decisions about adoption have forced businesses to discuss their future and impact in the face of emerging technology. You won't want to miss this discussion.Intro and news: The veto of California's AI Safety Bill (00:00:03)Can state-specific AI regulations really protect consumers, or do they risk stifling innovation? (Gov. Newsome's response)Veto highlights the critical need for risk-based regulations that don't rely solely on the size and cost of language models Arguments to be made for a cohesive national framework that ensures consistent AI regulation across the United StatesAre businesses ready to embrace large language models, or are they underestimating the challenges? (00:08:35) The myth that acquiring a foundational model is a quick fix for productivity woes The essential role of robust risk management strategies, especially in sensitive sectors handling personal dataReview of model cards, Open AI's system cards, and the importance of thorough testing, validation, and stricter regulations to prevent a false sense of securityTransparency alone is not enough; objective assessments are crucial for genuine progress in AI integrationFrom hallucinations in language models to ethical energy use, we tackle some of the most pressing problems in AI today (00:16:29)Reinforcement learning with annotators and the controversial use of other models for reviewJan LeCun's energy systems and retrieval-augmented generation (RAG) offer intriguing alternatives that could reshape modeling approachesThe ethics of advancing AI technologies, consider the parallels with past monumental achievements and the responsible allocation of resources (00:26:49)There is good news about developments and lessons learned from LLMs; but there is also a long way to go.Our original predictions in episode 2 for LLMs still reigns true: “Reasonable expectations of LLMs: Where truth matters and risk tolerance is low, LLMs will not be a good fit”With increased hype and awareness from LLMs came varying levels of interest in how all model types and their impacts are governed in a business.What did you think? Let us know.Do you have a question or a discussion topic for the AI Fundamentalists? Connect with them to comment on your favorite topics: LinkedIn - Episode summaries, shares of cited articles, and more. YouTube - Was it something that we said? Good. Share your favorite quotes. Visit our page - see past episodes and submit your feedback! It continues to inspire future episodes.
    --------  
    39:51

Meer Technologie podcasts

Over The AI Fundamentalists

A podcast about the fundamentals of safe and resilient modeling systems behind the AI that impacts our lives and our businesses. 
Podcast website

Luister naar The AI Fundamentalists, Lex Fridman Podcast en vele andere podcasts van over de hele wereld met de radio.net-app

Ontvang de gratis radio.net app

  • Zenders en podcasts om te bookmarken
  • Streamen via Wi-Fi of Bluetooth
  • Ondersteunt Carplay & Android Auto
  • Veel andere app-functies
Social
v7.9.0 | © 2007-2025 radio.de GmbH
Generated: 2/26/2025 - 5:18:58 PM